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Second quantization of open systems using quasinormal modes

K. C. Ho, P. T. Leung, Alec Maassen van den Brink, and K. Young
Department of Physics, The Chinese University of Hong Kong, Hong Kong, China

~Received 10 February 1998!

The second quantization of a scalar field in an open cavity is formulated, from first principles, in terms of the
quasinormal modes~QNMs!, which are the eigensolutions of the evolution equation that decay exponentially
in time as energy leaks to the outside. For any amount of damping, this formulation provides an exact
description involving the cavity degrees of freedom only, with the outside acting as a~thermal or driven!
source. Thermal correlation functions and cavity Feynman propagators are thus expressed in terms of the
QNMs, labeled by a discrete index rather than a continuous momentum. Single-resonance domination of the
density of states and the spontaneous decay rate is then given a proper foundation. This is an essential first step
towards the application of QNMs to cavity quantum electrodynamics phenomena, to be reported elsewhere.
@S1063-651X~98!14209-5#

PACS number~s!: 05.30.2d, 03.70.1k, 42.50.2p, 02.90.1p
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I. INTRODUCTION

In this paper we are concerned with quantum fields
open cavities—the obvious example of ultimate intere
would be electromagnetic fields in optical cavities@1# and
the associated problem of cavity quantum electrodynam
~CQED!. Such systems are open because energy leaks t
outside~e.g., via output coupling!, and as dissipative system
cannot normally be quantized on their own@2#; rather, one
must also consider the bath into which energy escapes
that the total universe is conservative. Thus such cavit
say, of linear dimensiona, can be embedded in a universe
dimensionL→`. One can then quantize on the modes
the universe, which are labeled by a wave numberp spaced
by Dp;p/L→0. The field quanta are then destroyed
created by operatorsa(p) anda†(p), and higher-order pro-
cesses involve integrals*dp over internal loops.

On the other hand, these cavities often have a very sm
amount of leakage, characterized by a parametere5Q21

!1, where the quality factor of the cavity can be as high
Q;106 or more. If this is the case, the intuition develop
from aclosedcavity, also of lengtha, should be relevant. A
closed cavity is a conservative system, with normal mo
~NMs! labeled by adiscreteindex j 51,2,..., where the wave
number is pj; j p/a, Dp;p/a. Field quanta in such a
closed cavity are destroyed and created by operatorsaj and
aj

† , and higher-order processes involve discrete sums( j .
Can quantum fields in anopencavity be described in a simi
lar way—in terms of discrete modes and the correspond
operators? If this is possible, computations will be simplifi
and will correspond to physical intuition, with each termj
associated with a cavity ‘‘mode.’’ The connection with th
limit of a closed cavity (e→0) would also become manifes

Quantization of a closed system relies on its NMs;
counterparts in an open system are the quasinormal m
~QNMs!, which are again factorized solutions,

f~x,t !5 f j~x!e2 iv j t, ~1.1!

where Imvj,0 because of the loss of energy. Each QN
corresponds to a resonance, with a widthg j5uIm vju. The
PRE 581063-651X/98/58~3!/2965~14!/$15.00
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purpose of this paper, in short, is to develop a formali
whereby field quantization can be implemented in terms
these QNMs, and to define and study operatorsaj ,aj

† for
these modes. Specifically, one wishes to express field co
lation functions, Feynman propagators, and other quant
in terms of the QNMs. The dissipative nature of the syst
is then contained in the QNMs themselves.

The advantages for CQED would be obvious. The si
plest phenomenon to which such a formalism can apply
the well-known enhancement~or suppression! of spontane-
ous decay rates when the emitted radiation falls on~or be-
tween! resonances@3#. Resonance domination of these pr
cesses has been discussed starting with the heur
argument due to Purcell@4#. He proposed that the Ferm
golden rule should be generalized: the density of states
unit volume, instead of the usuald0(v)5v2/(p2c3) for
vacuum~wherec is the velocity of light!, is to be replaced by
d(v);D/(2gV) for a D-fold degenerate QNM of widthg
in a cavity of volumeV. This leads to an enhancement fact
of K5d/d0;(1/8p)DQ(l3/V) for spontaneous emissio
on resonance, wherel is the wavelength of light emitted an
Q is the quality factor of the cavity. The essence of th
argument is that each resonance counts as one state, i.e
suitable sense it carries unit weight. While intuitively pla
sible, this statement is difficult to justify formally—since th
entire concept of a state, i.e., an NM, falls apart in an op
system. However, this argument, and its many variants
extensions, would find natural expression in a framew
that quantizes on the QNMs, and we shall in particular sh
explicitly below that each resonance carries unit weight.

In Sec. II, the QNM expansion ofclassicalfields outgoing
from a cavity is reviewed. The classical results may be or
nized into two levels. First, under conditions to be specifi
the Green’s functionG can be expanded in terms of QNM
Second, one can try to expand the outgoing classical fieldf
in terms of QNMs, and to establish a linear space struct
similar to that for conservative systems. In order to do so
turns out to be necessary to make use of a two-compo
formalism, dealing withf and the conjugate momentumf̂ at
2965 © 1998 The American Physical Society
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the same time. The linear space formalism is more eleg
but in its simplest form is limited to only one dimensio
~1D!.

The quantum formalism can likewise be approached
two ways. In the first, which we shall call the Green’
function method~Sec. III!, one focuses onc-number corre-
lation functions and propagators without explicitly expan
ing the field operatorf in terms of QNMs. The key idea is
that the retarded propagatorGR of the quantum theory is
exactly the same as the classical Green’s functionG, and the
latter has a QNM expansion. OnceGR is obtained, it is
straightforward to derive a QNM expansion for the corre
tion functionF as well.

In the second, which we shall call the field expansi
method, one tries to establish an expansion of the quan
field f, in parallel with the linear space structure establish
for classical fields. This allows us to interpret the expans
coefficientsaj andaj

† , roughly speaking, as generalized a
nihilation and creation operators for the discrete QNMsj .
However, before doing so, it has to be recognized that qu
tum fields cannot be constrained by the outgoing wa
condition—for the simple reason that zero-point~and ther-
mal! fluctuations must contain an incoming compone
Thus, the first step in developing this method, presente
Sec. IV, is to generalize the field expansion to handleincom-
ing waves as well. With this generalization, one can th
subject the fields to canonical quantization in Sec. V. Thi
done by starting with the universe, a closed Hermitian s
tem for which the quantization is unambiguously define
Then, in parallel with the usual removal of bath oscillato
@2#, the outside degrees of freedom are eliminated from
equations of motion@5#. The results will be equations o
motion and commutation relations for thediscreteoperators
aj andaj

† , in which the effects of the outside bath are clea
displayed: the loss of energy of each mode by leakage,
the pumping of each mode by the quantum or thermal fl
tuations from the outside.

The formalism is then used to evaluate the correlat
function F in Sec. VI, and the results are compared w
those obtained from the Green’s-function method. Intere
ingly, the results appear to be different—those derived fr
the Green’s-function method contain a single sum( j over
the QNMs, while the field expansion method yields a dou
sum ( jk with off-diagonal terms. The two are, howeve
shown to be equal through an identity onGR. Recalling that
the expansion of the classical field is unique only when
second componentf̂ is considered at the same time, we ne
show that the expansion of the correlation functionF is also
unique if we considerf̂ as well, giving the nondiagona
form. The density of statesd, which is intimately related to
the correlation function, is also expressed in terms of QNM
in particular, it is shown that up to corrections ofO(Q21),
each resonance carries unit weight in the density of stat

The results on the correlation function are then used
Sec. VII, to evaluate and discuss the Feynman propag
GF, which is the fundamental building block for CQED
Again, equivalent diagonal and nondiagonal forms are
tained. Particular attention is paid to the equal-space pro
gatorG̃F(x,x,v), whose imaginary part is related to the life
time of an excited atom placed atx. This quantity is
t,
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discussed in the approximation of domination by a sin
resonance, providing justification for Purcell’s heuristic a
gument@4# on the enhancement of spontaneous decay ra
The advantage of using the nondiagonal expression is a
emphasized.

In Sec. VIII, a very simple example is studied explicitl
and its correlation function and energy density are expres
in terms of a sum over QNM contributions.

Some final remarks are then given in Sec. IX. We str
that this paper is concerned entirely withfreefields, either as
a model of the free electromagnetic field in an optical cav
or as the zeroth-order building blocks in an interacti
theory, e.g., the propagators as ingredients in higher-o
Feynman diagrams. The development of the interact
theory and its application to CQED phenomena will be giv
elsewhere@6#. A partial account of the present theory h
been given in@7#.

II. CLASSICAL FIELDS

In this section, we summarize the QNM expansion
classical fields. In this paper, we deal with scalar fields in
only.

For closed, linear systems, eigenfunction expansio
based on the eigenfunctions or NMs of their evolution o
erators, are a tool of vital importance in theoretical physi
However, open systems are not directly amenable to an
analysis. Examples of open systems include optical cavi
@1#, and finite regions of space near astrophysical obje
from which gravitational waves can escape@8,9#. In these
systems, any initial state decays in time, so stationary N
do not exist. As the simplest example, we shall be concer
with the real scalar wave equation in one space dimensi

r~x!] t
2f5]x

2f, ~2.1!

studied in a ‘‘cavity’’ 0<x<a, with the nodal boundary
condition

f~x50,t !50 ~2.2!

at one end but with the outgoing one

f8~a1,t !52ḟ~a,t ! ~2.3!

at the other. The latter condition states that, just outside
cavity boundary, the fieldf(x,t) is an outgoing wave
f(x2t); the condition is specified ata1 because, as we
shall see below, one is often concerned with models in wh
there is a singularity inr(x) at x5a, leading to a possible
discontinuity in f8(x) @10#. The boundary condition~2.3!
turns the cavity into a dissipative system that is leaky but
absorptive. The model~2.1! has been widely used as th
scalar model of electromagnetism in an optical cavity@1#.
More physically, the 1D nature is realized in Fabry-Pe
cavities with lengths much smaller than the lateral dime
sions, and the scalar field model is rigorously applicable
the transverse electric sector.

For the open system~2.1!–~2.3!, the eigensolutions, la
beled by an indexj , have the form~1.1!, with the QNMs or
cavity resonancesf j satisfying



re
-
f
h

th

n
or
or
is

e

t-

th

im

ro

e
in
d
th
T
l-

ty

.,
no
th
n
ie
te
n

tw
n

d
in-
nc-

nd
ces

ion

ani-

e

the

or

n,

he

f

PRE 58 2967SECOND QUANTIZATION OF OPEN SYSTEMS USING . . .
@]x
21r~x!v j

2# f j50 ~2.4!

and the boundary conditions~2.2!, ~2.3! translating into

f j~0!50, f j8~a1!5 iv j f j~a!. ~2.5!

It is easily verified that Imvj,0, so that the solution~1.1! is
indeed decaying in time. Furthermore, the frequenciesv j ,
which we suppose to be ordered according to increasing
parts, are spaced byDv;p/a, approximately as for a con
servative system of sizea. With the possible exception o
modes with Revj50, the QNMs always occur in pairs wit
v2 j52v j* , and one can choosef 2 j5 f j* . While the fieldf
is real, the eigenvalues and eigenfunctions are complex;
is the reason for the pairing of modes.

The usual formalism concerning eigenfunction expa
sions relies on the hermiticity of the evolution operat
which only holds in the conservative case, and theref
breaks down for open systems. One possible resolution
embed the cavity into a ‘‘universe’’ 0<x<L with a nodal
condition atx5L→`, and study its NMs—the modes of th
universe. Namely, the system~2.1!–~2.3! is the restriction to
x<a of the problem~2.1! on the half-line 0<x,`, if one
sets

r~x.a![1 ~2.6!

and with the extension of the initial conditions to the ‘‘ou
side’’ x.a obeying f8(x.a,t50)52ḟ(x.a,t50).
However, this has the obvious disadvantage of having
work with a continuum of states~spaced byDv;p/L
→0) as opposed to the discrete set of eigenfunctions in
conservative case. Besides, the closed system of Eqs.~2.1!–
~2.3! shows that even in the presence of dissipation the t
evolution of the cavity can be studiedwithout explicit refer-
ence to the outside, which is the principal goal of the p
gram of second quantization of the open system.

Previous work~see@11–13# and references therein! has
established that, in spite of the lack of hermiticity in th
conventional sense, an eigenfunction expansion for outgo
waves in classical open wave systems can be formulate
terms of the cavity degrees of freedom only, overcoming
disadvantages of the modes of the universe approach.
sufficient conditions for this QNM expansion are as fo
lows. ~a! The functionr(x) has at least a step discontinui
at x5a. This demarcates a well-defined cavity region.~b!
The function r(x) has no tail outside the cavity, i.e
r(x.a)[1. This condition ensures that the outside does
reflect outgoing waves back into the cavity, enabling
complete elimination of the environment from the equatio
of motion. These conditions are satisfied for optical cavit
bounded from extended vacuum by a sharp material in
face. Under these conditions, the eigenfunction expansio
exact for any amount of dissipation.

The completeness of the QNMs can be pursued at
levels. First, one shows that the retarded Green’s functio
the system has the representation

G~x,y,t !5(
j

f j~x! f j~y!

2iv j
e2 iv j t ~2.7!
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for 0<x,y<a, and t>0, where thef j ’s are normalized ac-
cording to Eq.~2.11! below. Thus, the dynamics is containe
entirely in the QNMs, leading to a simple method of obta
ing the retarded propagators and quantum correlation fu
tions, as sketched in Sec. III.

Second, realizing that the wave equation~2.1!, like any
classical Hamiltonian problem, requires both position a
momentum to be specified as initial data, one introdu
function pairs f5(f,f̂)T with the conjugate momentum
f̂[rḟ, so that for eigenfunctionsf j5( f j ,2 irv j f j )

T. The
space of all function pairs~in general allowed to be complex!
satisfying the boundary conditions~2.2! and ~2.3! will be
denoted asG—the space of outgoing waves.

Using these pairs, one can prove that the time evolut
generated by Eq.~2.7! can be recast in the form@14#

f~ t !5(
j

aj~ t !f j , ~2.8!

where the expansion coefficients are given by

aj~ t !5
1

2v j
^f j ,f~ t !& ~2.9!

with aj (t)5aj (0)e2 iv j t and thebilinear scalar productfor
z,xPG,

^z,x&5 i H E
0

a1

dx@z~x!x̂~x!1 ẑ~x!x~x!#1z~a!x~a!J .

~2.10!

By simply letting t↓0 in Eq. ~2.8! one arrives at atwo-
component expansionfor an arbitrary realfPG @15,16#.
This expansion makes the completeness of the QNMs m
fest. The normalization used in Eqs.~2.7!–~2.9! can be con-
cisely expressed as

^f j , f j&52v j . ~2.11!

It is seen that Eq.~2.11! in general is not real, underlining th
difference between the product~2.10! and a conventional one
involving complex conjugation. The fact that Eq.~2.11! is
bilinear also serves to establish a phase convention for
wave functions.

Upon introducing the two-component evolution operat

H5 i S 0 r~x!21

]x
2 0 D , ~2.12!

the cavity evolution~2.1! can be written asi ] tf5Hf, in
striking analogy with quantum mechanics. In this notatio
the definition ~2.4! of f j takes the formHf j5v j f j . The
operatorH can be shown to be symmetric with respect to t
form ~2.10!, i.e.,

^z,Hx&5^x,Hz& ~2.13!

for any z,xPG. This analog of Hermiticity holds even
though the system is not conservative. The symmetry oH
yields the orthogonality relation

^f j , fk&50 for v jÞvk ~2.14!
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in an immediate transcription of the usual proof, leading
the uniqueness of the expansion. Incidentally, an expan
such as Eq.~2.8! but involving the first component alon
would not be unique.

Instead of its present formulation as an orthogonal exp
sion involving a generalized bilinear scalar product, the
ries~2.8! can also be regarded as a biorthogonal expansio
terms of the standard inner product@17#. The power of this
latter, slightly more involved method shows when seve
QNMs merge@18#, a possibility not considered in this pape

It is appropriate to contrast the two methods of approa
ing the classical theory, since they respectively underpin
two methods for dealing with the quantum case. The exp
sion of the Green’s function is easy to derive, and is read
generalized to higher dimensions; however, in itself it do
not lead to auniqueexpansion of the field, nor to concepts
orthogonality. The two-component approach based on
~2.8! is more elegant, exhibits a deeper resemblance to c
servative systems, and most importantly leads to aunique
expansion in terms of orthogonal functions. The tw
component expansion can in principle be generalized
higher dimensions by treating each angular momentum
tor l as a 1D radial problem@19#, but the degree of complex
ity increases withl . Thus each method has its own meri
both will be pursued below, and the results compared.

III. GREEN’S-FUNCTION METHOD

The quantum mechanics of the cavity plus outside
specified by the Hamiltonian

H5E
0

`

dx h~x!5E
0

`

dxF f̂2

2r
1

1

2 S ]f

]x D 2G ~3.1!

together with the canonical equal-time commutation relati

@f~x!,f̂~y!#5 id~x2y!. ~3.2!

Time evolution is then generated by means of the Heisenb
equationȦ5 i @H,A# for an arbitrary operatorA. However,
instead of the equations of motion for the quantum operat
in this section we focus first on the retarded propagator

GR~x,y,t !52 iu~ t !^@f~x,t !,f~y!#&, ~3.3!

in which f is of course to be regarded as an operator,
^¯& denotes the expectation value at a finite temperaturT
51/b; throughout we take\5kB51.

The central idea is that this propagator defined in term
the quantum fields can be evaluated without explicitly int
ducing an expansion for the field operatorsf, by simply
noticing thatGR(x,y,t) is exactly the same as the Green
functionG of the classical wave equation@20#, which has the
expression~2.7! in terms of QNMs. This relationship be
tween GR and G follows from the commutation relation
~3.2!.

In terms ofGR, it is straightforward to compute the equ
librium correlation function

F~x,y,t ![^f~x,t !f~y!&. ~3.4!
o
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We shall devote attention toF, because the physical quant
ties of interest in quantum field theory can often be form
lated in terms of correlation functions, at either zero or fin
temperatures. For example, the Casimir force is merely
vacuum expectation value of the electromagnetic stress
sor, which is an equal-time equal-space correlation funct
of two field operators. The spontaneous decay rate of
atom in an excited state is, in the golden-rule approximati
related to the correlation function of two electric-field oper
tors.

Since the correlation function is related to the retard
propagator@20#, one gets

F̃~x,y,v!5
22

12e2bv Im G̃R~x,y,v! ~3.5!

5
iv

12e2bv (
j

f j~x! f j~y!

v j~v22v j
2!

. ~3.6!

The real-time correlator can be obtained from Eq.~3.6! by
contour integration, yielding

F~x,y,t !5(
j

f j~x! f j~y!

2v j~12e2bv j !
e2bv ju~2t !2 iv j utu

1 (
m51

`
e2mmutu

b
@G̃R~x,y,2 imm!2G̃R~x,y,imm!#.

~3.7!

The first term in this formula is due to the QNM poles
F̃(x,y,v); the second term, which has no counterpart
GR(x,y,t), is caused by the Matsubara poles inF̃(x,y,v) at
frequenciesmm[2pmT. This very simple derivation has
the advantage that it goes through in situations where
two-component formalism may be more complicated.

In principle, physical quantities can be expressed in ter
of F—bilinear quantities~such as the energy density! as lin-
ear combinations ofF and its derivatives, and other quant
ties involving products ofF ’s. For example, the energy den
sity is

^h~x!&5 1
2 @2r~x!] t

21]x]y#F~x,y,t !ux5y,t50 . ~3.8!

However, this quantity is divergent. Subtracting off the ze
point, we consider

U~x,T!5^h~x!&2^h~x!&T50

5 1
2 @2r~x!] t

21]x]y#FS~x,y,t !ux5y,t50 ~3.9!

in terms of the subtracted correlation functionFS[F2F0 ,
whereF05 limb→` F. The limit b→` is best taken in Eq.
~3.6! prior to Fourier inversion. We further make use of th
expansion forG̃R to get

FS~x,y,t !5(
j

f j~x! f j~y!

v j
Cj~ t !, ~3.10!
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Cj~ t !5
e2 iv j t

2 F 1

ebv j21
1u~2Re v j !G

1
i

b (
m51

`
mme2mmt

mm
2 1v j

2

2
i

4p
eiv j tE1~ iv j t !2

i

4p
e2 iv j tE1~2 iv j t !,

~3.11!

where this and subsequent formulas forFS are written only
for t.0. Here, E1(z) is the exponential integral functio
@21#

E1~z!5E
z

1` e2u

u
du, ~3.12!

in which the integration contour is defined not to pa
through the origin and the negative real axis; on that se
axis, the function is defined as the principal value. We f
ther defineu(0)[ 1

2 .
Alternatively, for greater formal similarity to the conse

vative case, Eq.~3.11! can be rewritten as

FS~x,y,t !5 ( 8
Re v j>0

2 ReF f j~x! f j~y!

v j
C̃ j~ t !G , ~3.13!

C̃j~ t !5
e2 iv j t

2~ebv j21!
1

i

b (
m51

`
mme2mmt

mm
2 1v j

2

2
i

4p
eiv j tE1~ iv j t !2

i

4p
e2 iv j tE1~2 iv j t !. ~3.14!

The prime on the sum in Eq.~3.13! signifies that terms with
Revj50 are to be taken with weight12 .

The actual evaluation ofU(x,T) needs some care in th
j→` part of the sums. These details, and the very sim
problem for the calculation of the Casimir force, will b
given elsewhere.

IV. INCOMING WAVES

The expansion of a classical field sketched in Sec. I
restricted to outgoing waves, i.e., tofPG, satisfying Eq.
~2.3!. In preparing the ground for the expansion of aquan-
tum field, it is necessary to remove this restriction, for t
simple reason that the zero-point quantum fluctuations
inevitably contain incoming waves as well. Moreover, o
would wish that the ensuing theory should be applicable
situations where there is an incoming pump field.

Thus, we study the wave equation~2.1! for the system
together with the outside ‘‘bath,’’ i.e., on the half-lin
x.0, with r(x) satisfying Eq.~2.6! and the boundary con
dition ~2.2!. The initial conditions are now arbitrary and a
cordingly the outgoing boundary condition~2.3! is aban-
doned, i.e., the restriction off to the cavity need not lie inG.
For the outsidex.a @where r(x)51# the initial data are
decomposed as

f~x.a,0!5fin1fout, ~4.1!
s
i-
-

r

s

ll

o

with fin satisfying the incoming wave conditionf in8 5f̂ in ,

while fout8 52f̂out. For the cavity subsystem this decomp
sition leads to the boundary condition

f8~a1,t !1f̂~a1,t !52f̂ in~a1t ![b~ t !, ~4.2!

where the driving forceb @see Eq.~4.4! below for its name#,
being determined by the initial data, is supposedly a kno
function ~at least in a statistical sense! that characterizes the
waves incoming from the outside. Inside the cavity, the fi
is then expanded in terms of QNMs by Eq.~2.8! with

aj5
1

2v j
^f j ,f&

5
i

2v j
H E

0

a1

dx fj~x!@f̂~x!2 ir~x!v jf~x!#

1 f j~a!f~a!J . ~4.3!

That is, weretain the expansion formula and the inner pro
uct definition and notation even thoughf¹G. As a conse-
quence, the sum in Eq.~2.8! will in general not converge to
f̂ at x5a, the point where the boundary condition is im
posed. Nevertheless, the sum for the first component c
verges tof everywhere, while the sum for the second co
ponent converges tof̂ everywhere except atx5a @22#. ~This
is most easily appreciated by noticing that upon changingf̂
at just one point, the resultant wave function can be mad
lie in G. In the Hilbert-space setting of Refs.@17,18#, G is a
dense vector subspace, not a closed subspace of codime
1; this clarifies further why there is no extra degree of fre
dom associated with incoming waves.! This flaw on a set of
measure zero does not lead to problems, however, for
projection formula~4.3! renders the coefficientsaj (t) well
defined irrespective of the convergence of the series~2.8!.

The equation of motion foraj will now be derived. By
differentiating Eq.~4.3! with respect to time, and then inte
grating by parts, one obtains

ȧ j~ t !1 iv jaj~ t !5
i

2v j
f j~a!b~ t !. ~4.4!

In contrast to the case of pure outgoing waves, there is n
an extra term on the right-hand side: each QNM is driven
the ‘‘force’’ b(t), and at the same time decays because
Im vj . The coupling to the ‘‘force’’ is determined by th
surface value of the QNM wave functionf j (a). This equa-
tion of motion will survive quantization, to be carried out
the next section.

V. FIELD EXPANSION METHOD

A second approach to second quantization proceeds m
explicitly by first promoting f and f̂ to operators@23#.
These fields may be regarded as operators for the e
‘‘universe,’’ which is a conservative system to which canon
cal quantization can be applied. The same projection form
~4.3! as in the classical case now defines theaj ’s as Hilbert
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space operators, obeying the equation of motion~4.4!.
The crucial point is that the field commutation relatio

~3.2! and the projection formula~4.3! now lead directly to
commutators for these coefficients, viz.,

@aj ,ak#5
1

4v jvk
@^ f j ,f&,^ fk ,f&#

52
1

4v jvk
H E

0

a1

dx dy „f j~x! f̂ k~y!@f̂~x!,f~y!#

1 f̂ j~x! f k~y!@f~x!,f̂~y!#…

1E
0

a1

dx fj~x! f k~a!@f̂~x!,f~a!#

1E
0

a1

dy fj~a! f k~y!@f~a!,f̂~y!#J . ~5.1!

In these equations,f andf̂ areq numbers, whilef j , f k arec
numbers. The two surface terms on the last line cance
long as thed function at the boundary of the integratio
interval is interpreted consistently. In the first line, the co
mutation relation~3.2! gives d(x2y) and cancels one inte
gration. One is then left with

@aj ,ak#5
vk2v j

4v jvk
E

0

a1

dx r~x! f j~x! f k~x! ~5.2!

5
i ~v j2vk! f j~a! f k~a!

4v jvk~v j1vk!
, ~5.3!

where the second form follows from the first by means of
orthogonality relation~2.14!, and will be useful later for
comparison with results from Sec. VI.

The linear-space structure for open systems involves
jections based on the generalized inner product~2.10!, which
is bilinear rather than linear in one vector and conjugate
ear in the other; thus the expression in Eq.~5.2! involves an
integral overf j (x) f k(x) without complex conjugation. How
ever, for the sake of a more transparent comparison with
conservative case, it is useful to rewrite these expression
changingj °2 j and usinga2 j5aj

† , v2 j52v j* , and f 2 j

5 f j* to give

@aj
† ,ak#52

vk1v j*

4v j* vk
E

0

a1

dx r~x! f j* ~x! f k~x! ~5.4!

52
i ~v j* 1vk! f j* ~a! f k~a!

4v j* vk~v j* 2vk!
. ~5.5!

The result in the form~5.4! reveals the conservative lim
most clearly; in this limit the integral would simply b
d u j u,uku .

Comparison of Eqs.~5.4! and ~5.5! shows that

u f j~a!u2

2uIm v j u
→1 ~5.6!

in the conservative limit. A more explicit proof is given i
Appendix A.
as

-

e

o-

-

e
by

The above commutators show that, if we define,
j .0,

a j5A2v jaj ,

a j
†5A2v j* a2 j , ~5.7!

then in the conservative limit these should reduce to the
nihilation and creation operators, respectively@24#. Indeed,
the QNM expansion~2.8! then takes the form

S f

f̂ D 5(
j .0

S ~a j
†1a j !/A2v j

irAv j /2~a j
†2a j !

D f j , ~5.8!

the standard NM field expansion for a closed cavity@16#. For
finite damping, however, the operatorsaj have mixed cre-
ation and annihilation character.

In short, we have established an expansion of the quan
field f ~and its conjugate momentumf̂) in terms of opera-
tors aj and aj

† , and then obtained equations of motion a
commutation relations for the latter. This, in principle, com
pletes the program of second quantization, and it remain
use these results to compute correlation functions and pr
gators, which we proceed to do in the following sections

However, the deviation of the commutators~5.3! and
~5.5! from the canonical form prevents the construction o
Fock space, as is the case for quantum dissipative system
general@2#.

VI. CORRELATION FUNCTIONS

The formalism derived in the last section for expandi
the quantum fieldf in terms of the operatorsaj andaj

† will
be applied to the calculation of equilibrium correlation fun
tions, yielding discrete representations for the cavity c
relator F in the presence of dissipation. Section VI A co
tains the calculation ofF per se, and Sec. VI B compares th
results with those obtained from the Green’s-function a
proach in Sec. III. In Sec. VI C we evaluate and discuss
density of states.

A. Field-field correlator

In Secs. VI to VIII we take the system to be in equilib
rium. Then, the initial conditions for Eq.~4.4! are irrelevant
and the dynamics are completely specified by the driv
force b, i.e.,

aj~ t !5
i f j~a!

2v j
E

2`

t

dt8eiv j ~ t82t !b~ t8!. ~6.1!

The nonzero imaginary part of thev j renders the integra
rapidly converging, in contrast to the conservative case. F
rier transforming and taking expectation values then lead

^ã j~v!ak&5
f j~a! f k~a!

4v jvk~v j2v!~vk1v!
^b̃~v!b&. ~6.2!

Sinceb is fully specified by theincoming waves from the
free string a,x,`, it does not ‘‘know’’ about the cavity
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x<a, so one can use the free infinite-string correlation fu
tion to calculate its spectral density from the definition~4.2!
as

^b̃~v!b&52~]x2 iv!2^f̃~x,v!f~y!& freeuy5x

52~]x2 iv!2
cos@v~x2y!#

v~12e2bv!
U

y5x

5
2v

12e2bv . ~6.3!

For a simple check, antisymmetrize Eq.~6.2! in j and k
and perform the inverse Fourier transform to reproduce
~5.3! ~for the expectation value of the commutator!. Inciden-
tally, by assuming other forms for̂b̃(v)b&, the theory ac-
commodates various incoming pump fields.

Given the two-point function~6.3! for the driving force, it
is straightforward to compute the two-point function for t
response, namely the field-field correlation function ins
the cavity. This now merely requires summation, that
combination of Eqs.~2.8!, ~6.2!, and~6.3! leads to

F̃~x,y,v!5
v

12e2bv

3(
jk

f j~a! f k~a!

2v jvk~v j2v!~vk1v!
f j~x! f k~y!.

~6.4!

The above derivation leads to a clear physical interpreta
of the pole structure of Eq.~6.4! in the complexv plane: the
Matsubara poles atv5 imm52ipmT (mPZ) arise from the
thermal character of the incoming noise, while the QN
poles correspond to cavity resonances excited by this no

B. Comparison of two forms for the correlation function

It will be noticed that we have obtained two differe
QNM expansions forF̃, namely, the double sum in Eq.~6.4!
and the single sum in Eq.~3.6!. We next prove their equiva
lence without invoking the QNM expansion of a quantu
field.

To do so, we rely on the identity@25#

G̃R~x,y,v!2G̃R~x,y,2v!5
2v

i
G̃R~x,a,v!G̃R~y,a,2v!

~6.5!

for x,y<a. This identity, proved in Appendix B, has n
nontrivial counterpart in closed, conservative systems. Fo
interpretation, notice that G̃R(x,y,v)2G̃R(x,y,2v)
}Im G̃R(x,y,v) vanishes in the conservative limit and hen
is a measure of dissipation, which the right-hand side st
as taking place exclusively at the surfacex5a.

Given this identity, the equivalence of the two expre
sions forF̃ follows simply by canceling the Bose prefacto
in Eqs. ~3.6! and ~6.4! and comparing the result with th
Fourier transform of Eq.~2.7!.

Although the two forms are equivalent, each has its o
attractive properties. The diagonal form~3.6! is simpler,
-

q.

e
,

n

e.

n

es

-

n

while the nondiagonal form~6.4! is manifestly factorizable:
F̃(x,y,v)5A(v)x(x,v)x(y,2v) @26#. Anticipating a
similar structure for Feynman propagators, the nondiago
form permits a quantum in one modej to propagate to an-
other modek, while the diagonal form implies that the mod
index is ‘‘conserved.’’

The expansion of correlations involvingf alone is not
unique, on account of the doubling of QNMs (j and 2 j )
compared to NMs@12,13#. As discussed in Sec. II, it is mor
natural to considerf5(f,f̂)T, which leads to a unique ex
pansion. Thus we define a tensor field-field correlator,

F̃~x,y,v![^f̃~x,v! ^ f~y!&

5S ^f~x,v!f~y!& ^f~x,v!f̂~y!&

^f̂~x,v!f~y!& ^f̂~x,v!f̂~y!&
D

5S 1 ivr~y!

2 ivr~x! v2r~x!r~y!
D F̃~x,y,v!,

~6.6!

which can be expressed as

F̃~x,y,v!5(
jk

ã jk~v!f j~x! ^ fk~y!, ~6.7!

whereã jk is evaluated to be~Appendix C!

ã jk~v!5
v f j~a! f k~a!

2~12e2bv!v jvk~v j2v!~vk1v!
; ~6.8!

that is, the nondiagonal expansion~6.4! is the unique one
that generalizes to the tensorF̃ as in Eq.~6.7!.

C. Density of states

Another important quantity is the density of states, whi
figures prominently in the heuristic argument of Purcell@4#
and others@27#. The local density of statesd(x,v) @cf. Eq.
~D3!#, given below only for real positivev, is related to the
correlation functionF̃ by

d~x,v!52
2v

p
Im G̃R~x,x,v!5

v

p
~12e2bv!F̃~x,x,v!,

~6.9!

which allows expression of this important quantity in term
of the QNMs. From Eq.~3.6! one gets

d~x,v!5
v

p (
j

Im
f j

2~x!

v j~v j2v!
, ~6.10!

while the nondiagonal expression~6.4! gives
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d~x,v!5
v2

2p (
jk

f j~a! f k~a!

v jvk~v j2v!~vk1v!
f j~x! f k~x! ~6.11!

5
1

2p (
jk

f j~a! f k~a!

~v2v j !~v1vk!
f j~x! f k~x!. ~6.12!

The second form results from the first by use of the iden

(
j

f j~x! f j~y!

v j
50, ~6.13!

which follows from Eq.~2.7! by letting t↓0.
Superficially, the diagonal form is simpler. However,

we take a single resonance approximation, Eq.~6.10! yields,
with one termj ,

d~x,v!'
v

p
Im

f j
2~x!

v j~v j2v!
, ~6.14!

which is not positive definite. On the other hand, for t
nondiagonal form, the appropriate approximation is to ta
one j andk52 j in Eq. ~6.12!, leading to

d~x,v!'
u f j~a! f j~x!u2

2p@~v2Re v j !
21~ Im v j !

2#
, ~6.15!

which is manifestly positive and, moreover, Lorentzia
From this expression one finds, to leading order inuIm vju
5g, that

E
res

dvE
0

a1

dx r~x!d~x,v!'1, ~6.16!

where thev integral is over one resonance. This statemen
readily derived from Eq.~6.15! by using Eq.~5.6! and the
fact that*dx r(x)u f j (x)u2'1 for a narrow resonance. Reca
that, in the modes of the universe approach@27#, the unit
weight of the resonances emerges simply as a numerica
sult, and is difficult to understand theoretically. Here t
same result~in 1D! is justified analytically, and moreove
one can in principle~a! estimate the corrections due to oth
resonances~note that there is no ‘‘background’’ apart from
the QNM contributions!, ~b! calculate the corrections t
higher order ing, and~c! discuss the local density of state
d(x,v) rather than the integrated*dx d(x,v). Incidentally,
this discussion shows that of the two equivalent forms~6.11!
and~6.12!, the latter is the more appropriate, since it leads
a finite integral overv in the single-resonance approxim
tion.

One can derive another sum rule,

E
0

v

d~x,v8! dv8'
v

pAr~x!
, ~6.17!

for largev. This second sum rule@27# states that the state
are merely redistributed without changing their total numb
However, this sum rule is not immediately useful when e
pressed in terms of the QNMs, and will not be further d
cussed here.
y

e

.

is

re-

o
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VII. FEYNMAN PROPAGATOR

A. Derivation of the Feynman propagator

Another important correlation function is the Feynm
propagator,

GF~x,y,t !52 i ^T $f~x,t !f~y!%&, ~7.1!

in which T denotes time ordering. Taking the Fourier tran
form of the definition~7.1! leads to a direct relation to th
correlator~3.4!,

G̃F~x,y,v!52E dv8

2p H 1

v81v2 i«
1

1

v82v2 i«J
3F̃~x,y,v8!. ~7.2!

We shall limit the discussion below toT50. Substitution of
the right-hand side of Eq.~6.4! into Eq. ~7.2! yields G̃F as
@28#

G̃F~x,y,v!52 i(
jk

f j~a! f k~a!

2v jvk~v j1vk!

3H u~v!
v j

v j2v
1u~2v!

vk

vk1vJ f j~x! f k~y!.

~7.3!

The cavity Feynman propagator can also be expresse
diagonal form, by substituting Eq.~3.6! into Eq.~7.2!. Again
taking T50, this leads to

G̃F~x,y,v!5
1

2 (
j

f j~x! f j~y!

v j~ uvu2v j !
~7.4!

5
1

2 (
j

f j~x! f j~y!

uvu~ uvu2v j !
, ~7.5!

for realv. It is stressed that these forms as single sums e
even thougĥT $aj (t)ak%&}” d j ,6k in general. The form~7.5!
for G̃F has been derived from Eq.~7.4! by means of the
QNM identity ~6.13!. The second form with its divergenc
@29# at v50 is less convenient than the first. It has be
included to show that caution is needed when speaking a
‘‘the contribution of one QNM.’’ In fact the two summand
are almost equal ifuvu'v j ; such resonances are seen to
exclusively associated to terms withj >0.

All of these equivalent expressions~7.3!, ~7.4!, and~7.5!
can be written generally as

G̃F~x,y,v!5(
jk

f j~x!D jk~v! f k~y!, ~7.6!

with different forms forD jk . This has an obvious diagram
matic interpretation: the field atx(y) couples to the QNM
j (k) with a vertex f j (x)„f k(y)…, and the QNM propagate
from modej to modek with an amplitudeD jk . This may be
compared with the more familiar case of an infinite cons
vative system, say,
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G̃F~x,y,v!5E dp

2p
e2 ipxD~p,v!eipy. ~7.7!

It is seen that*dp¯ is replaced by( jk¯ . An important
goal of the present second-quantized theory is to st
cavity-atom interactions@6#, often referred to as CQED. Th
objective is to establish a set of ‘‘QNM Feynman rules,’’
which each line in a diagram is represented not by a cont
ous momentum, but by one discrete index~or a pair of
them!—not only for computational convenience, but also b
cause each term can be associated with a cavity resona
Such a discrete representation is especially useful for mi
scopic cavities, where the resonances are widely space
frequency. The above results are crucial for establish
these Feynman rules.

The possibility of alternate expressions for the propaga
may recall a similar situation with gauge theories@30#,
though the reasons are quite different.

B. Decay rate and the resonance approximation

While the use of the Feynman propagators in an inter
ing theory will be presented elsewhere@6#, it is nevertheless
profitable at this point to consider the very simple exam
of an atom coupled to the field at a fixed pointx; in the
dipole approximation and for weak atom-field coupling, t
decay rate is related to the equilibrium equal-space prop
tor

D̃~v![G̃F~x,x,v!. ~7.8!

In particular, we shall be interested in the sing
resonance approximation forD̃. The obvious choice is to
take a single term of the sum in Eq.~7.4!, i.e.,

D̃~v!'D̃ ra8~v![
f j~x!2

2v j~ uvu2v j !
. ~7.9!

The alternative is to start from Eq.~7.3!, and retain only the
( j ,2 j )1(2 j , j ) terms ~only when k52 j does the factor
v j1vk in the denominator of Eq.~7.3! get small close to the
conservative limit, which is the only case in which a sing
resonance can dominate! to arrive at

D̃~v!'D̃ ra~v!

[
u f j~x! f j~a!u2

4uv j u2uIm v j u
F v j

uvu2v j
2

v j*

uvu1v j*
G . ~7.10!

Without loss of generality choosingj .0, the second~non-
resonant! term in Eq. ~7.10! is of the same order as thos
already neglected, and hence for most purposes may be o
ted. However, only the sum of the two terms in Eq.~7.10!
preserves the fundamental relation@20#

D̃R~v!5D̃A* ~v! ~7.11!

for realv, whereD̃R (D̃A) is the retarded~advanced! propa-
gator obtained fromD̃(v) by continuation from positive
~negative! frequencies. As a consequence, it turns out@6# that
y
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-
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g
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e
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-
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keeping both terms and using the ensuing cavity propag
to compute the self-energy of a two-level atom leads to
renormalization of the level splitting that is guaranteed to
real. Of course, forD̃ ra8 the equality~7.11! is always vio-
lated.

Moreover, D̃ ra8 does not obey the equally fundament
inequality ImD̃(v)<0 on the real axis@20# @see also~7.12!
below#, which D̃ ra satisfies term by term. Violation of this
inequality in general leads to a retarded atom propagator
has poles in the upper halfv plane @6#, signifying an un-
physical instability.

To be sure, in spite of these crucial differences betwe
D̃ ra andD̃ ra8 their residues atuvu5v j agree in the conserva
tive limit, in which the domination of a single QNM be
comes rigorous. For a proof it suffices to note th
u f j (a)u2/2uIm vju→1 in this limit ~Appendix A!.

We have discussed the single-resonance approximatio
both the density of statesd(x,v) and to the equal-spac
propagatorD̃(v). In fact, the arguments are equivalen
which can be appreciated physically from the fact that th
both relate to the decay rate, and mathematically from
following identity for real positivev:

d~x,v!52
2v

p
Im D̃~v!. ~7.12!

In several places we have remarked that the nondiag
QNM representation has some nice properties, and is in
the unique representation if the fieldf and the conjugate
momentumf̂ are considered together, for example, in t
tensor correlator~6.7!. There are of course many ways
understand why the correlator is nondiagonal; one of
most direct is via Eq.~4.4!, which shows that all the mode
coefficientsaj are driven by the same forceb(t), so in gen-
eral different coefficients will have phase coherence a
hence a nonzero correlation. Incidentally, this nondiago
nature isnot a quantum effect, since the property survives
high temperatures, e.g.,b→0 in Eq. ~6.4!. However, all the
propagators and correlation functions become diagonal in
conservative limit, as they should. In fact, applying E
~2.14! to Eq. ~6.2! in this limit readily yields

^ã j~v!ak&5
p

v~12e2bv!
d~v2v j !d j ,2k , ~7.13!

in agreement with the creation-annihilation interpretation
theaj in this limit given above Eq.~5.8!. As a result both Eq.
~6.4! for F̃ and Eq. ~7.3! for G̃F become diagonal in the
conservative limit as well.

VIII. EXAMPLE: THE DIELECTRIC ROD

A useful check and example of the preceding is given
the ‘‘dielectric rod’’ model@11#:

r~x!5n2u~a2x!1n0
2u~x2a!. ~8.1!

That is, we generalize the condition~2.6! and allow
r(x.a) to be an arbitrary constantn0

2. To be sure, this gen
eralization is trivial in principle since a model with param
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eters (n,n0 ,a) can be mapped onto one with paramet
(n/n0,1,n0a) by the substitutionx°n0x. Yet it is conve-
nient in practice, since we can now deal with two differe
conservative limits@see the discussion below Eq.~8.4!#:
n/n0→0 ~the ‘‘nodal’’ limit ! andn/n0→` ~the ‘‘antinodal’’
limit !, by letting n0→` and n0→0, respectively, while
keepingn, a, and hence Revj @see Eq.~8.2! below# fixed.

The model~8.1! can be solved exactly for the QNM fre
quencies@12#, which read@31#

nav j5H ~ j 1 1
2 !p2 i arcoth~n/n0!, n.n0

j p2 i artanh~n/n0!, n,n0

~8.2!

5 j p2
i

2
ln

n01n

n02n
. ~8.3!

Both n0→` and n0→0 are indeed seen to be conservat
limits (Im vj→0). They correspond to clamped and fr
ends, respectively, in the interpretation of the wave equa
as the transverse vibrations of a string@32,33#. On the other
hand, for n0→n the dissipation tends to infinity, and th
QNM description breaks down in the limitn05n ~see, how-
ever, the end of this section!.

The QNM wave functions are given inside the cavity
@31#

f j~x!5A 2

n2a
sin~nv j x!; ~8.4!

their normalization is still given by Eq.~2.11!, but our gen-
eralizationr(x.a)5n0

2 is readily shown to imply a corre
sponding modification of the surface term in the scalar pr
uct definition itself, viz.,

^z,x&5 i H E
0

a1

dx@z~x!x̂~x!1 ẑ~x!x~x!#1n0z~a!x~a!J .

~8.5!

In the ‘‘nodal’’ limit n0→`, Eqs. ~8.2! and ~8.4! show
that f j (a);n0

21, so that the factorf j (a) f k(a) in the surface
term of the orthogonality relation~2.14!, ~8.5! overcomes the
explicit factorn0 , allowing the surface term to be neglecte
This nodal limit has a counterpart in the ‘‘loaded string
modelr(x)511Md(x2a), whereM can be set to infinity
@34#. On the other hand, in the antinodal limitn0→0 it is the
explicit n0 that allows neglect of the surface term,f j (a)
tending to a constant. Hence, the QNM expansion becom
standard normal-mode expansion also ifn0!n, which clari-
fies a detail left open in Sec. II and Ref.@12#.

By means of a partial-fraction expansion and the iden
~6.13!, the expression~3.6! for F̃ can be rewritten as

F̃~x,y,v!5
2 i

2v~12e2bv!

3(
j

f j~x! f j~y!F 1

v j2v
1

1

v j1vG , ~8.6!

which is analytically more convenient even though the s
over j converges more slowly. Upon substitution of the d
s

t

n

-

.

s a

y

electric rod QNMs@Eqs. ~8.2! and ~8.4!# into Eq. ~8.6!, the
sum over j can be performed as theconventionalFourier
series@35#,

(
j

e2 j i pz

j p2 ia
5

2ieaz

e2a21
, 0,z,2 ~8.7!

implying

(
j

ej i pz

j p2 ia
5

2iea~22z!

e2a21
, 0,z,2, ~8.8!

and some rearrangement yields the correlation function a

F̃~x,y,v!5
2n0sin~nvx!sin~nvy!

v~12e2bv!@n0
2sin2~nva!1n2cos2~nva!#

.

~8.9!

This result also follows from the modes of the universe a
proach in Appendix D.

As discussed in Sec. III, the subtracted correlation fu
tion FS is directly related to the energy density, and is in fa
the squared amplitude of the field strength. Figure 1 sho
FS(x,x,t) versusx at t50.1 for the dielectric-rod model with
a51, n051, n55, for different values ofb; this shows that
the field amplitude is largest near the leaky end of the r
Figure 2 showsFS(x,x,t) versust at x50.3 ~all other pa-
rameters the same as before!. This diagram vividly illustrates
the advantage of the QNM approach—although the resul
in principle, obtainable from the modes of the univer
method, the clear oscillatory signal is best captured by
pressing this quantity in terms of QNMs.

Also for the Feynman propagator the sum~7.4! can be
performed ifr5const, yielding

FIG. 1. Equal-space correlation function within the dielect
rod as a function ofx at t50.1 and different inverse temperaturesb.
The refractive indices aren051, n55; the widtha51.
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G̃F~x,y,v!52
sin~nvx!

nv

3
n cos@nv~a2y!#2 in0sin@nuvu~a2y!#

n cos~nva!2 in0sin~nuvua!

~8.10!

for x,y, while for x.y the propagator is obtained vi
G̃F(x,y,v)5G̃F(y,x,v).

Notice that the final expressions~8.9! and~8.10! tend to a
finite limit if n0→n even though the individual terms in Eq
~3.6! and ~7.4! do not. This illustrates that the QNM expan
sion retains its validity up to arbitrarily large damping.
this semi-infinite string limit the very notions of cavity an
environment lose their meaning, and indeed the right-h
sides of Eqs.~8.9! and ~8.10! are seen to become indepe
dent ofa.

IX. FINAL REMARKS

To summarize, we have developed the second-quant
version of the field theory using the QNM basis. Vario
physical quantities are then written as sums over QN
contributions—either as diagonal sums over a single indej ,
or as nondiagonal sums over a pair of indicesjk. The reso-
nance approximation is studied, leading to a proof of the u
weight of narrow resonances in the density of states,
equivalently, the enhancement rate for the decay of exc
states as embodied in the behavior of the equal-space pr
gator D̃(v).

As has been mentioned already in Sec. I, an impor
extension of the present work is to include matter in
Hamiltonian ~3.1!, enabling the application of QNMs to
quantum optics. This will be the subject of Ref.@6#. Other
generalizations include the study of vector fields, and
open systems in three space dimensions. Further, a dev
ment parallelling the present one could be carried out for
Klein-Gordon equation instead of the wave equation~2.1!
@9#. Since the two evolution equations are directly related

FIG. 2. Equal-space correlation function within the dielect
rod as a function oft atx50.3 and different inverse temperaturesb.
The refractive indices aren051, n55; the widtha51.
d
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a transformation of the spatial variable@12#, however, this
has not been taken up here.

Non-Hermitian Hamiltonians and the ensuing complex
genvalues also figure prominently in Siegman’s work on d
sipative CQED@36#, which elaborates on that of Fox and L
@37#, where already the latter considers eigenvalue proble
for complex symmetric operators. However,@36# and @37#
deal with transverse modes in the semiclassical limit@only
considering~a! c-number fields with some effective quantu
noise, and~b! the limit l!a, wherel is the wavelength#.
Thus the present paper pertains to a different regime,
there is the intriguing possibility of a future unifying ap
proach.

Instead of generalizing the physical system one can a
relax the assumption of global equilibrium made in Sec.
It is recalled here that the formalism of Secs. IV and V—an
in particular, the driving forceb of Eq. ~4.2!—is well defined
for any initial state of the fields; taking a coherent state
the latter instead of a thermal one enables the study o
pumped cavity.

On the theoretical side, it would be interesting to provi
a path-integral formulation of QNM quantization. This ca
supposedly be done on two levels. The first, semiphen
enological one is to write down an effective action gener
ing dynamics equivalent to Eq.~4.4!. The second, more fun
damental one is to start with the action for the who
universe for our model~3.1!, integrate out the degrees o
freedom of the outside, and use a QNM basis for the ensu
dynamics of the cavity.

For such future developments, this paper can hopef
serve as a starting point and reference. In conclusion,
have shown that the QNM expansion is as powerful for op
second-quantized systems as it is for their classical coun
parts.
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APPENDIX A: RELATION BETWEEN SURFACE TERM
AND IMAGINARY PART OF THE FREQUENCY

In this appendix we give an alternative proof of the ide
tity ~5.6! in the conservative limit. For this purpose, gene
alize to complex classical fields and define the energy d
sity h(x)5u]xfu2/21uf̂u2/2r(x), so that ḣ(x)52]xj (x)
with the current j (x)52Re@f̂(x)]xf(x)#/r(x). Define the

cavity energy E5*0
a1

dx h(x), then for a field f(x,t)
5 f j (x)e2 iv j t at t50 one has

E5
g

2
u f j~a!u21~Re v j !

2E
0

a1

dx r~x!u f j~x!u2, ~A1!

where g[uIm vju. In the conservative limit the first term
vanishes, while the integral in the second term tends to u
so that E→uv j u2. Combination with 2Ė52gE5 j (a1)
5uv j u2u f j (a)u2 shows that u f j (a)u2/2g→1 in this limit,
which proves our assertion.
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APPENDIX B: IDENTITY FOR RETARDED PROPAGATOR

In this appendix we derive the Green’s-function ident
~6.5!. To this end, we definef (x,v) „g(y,v)… as the solu-
tion of the homogeneous wave equation~2.4! ~upon the sub-
stitutionv j°v) satisfying the first~second! of the boundary
conditions~2.5! @38#. This allows one to write

G̃R~x,y,v!5
f ~x,v!g~y,v!

W~v!
, ~B1!

where one can choosef (x,v)5 f (x,2v)5 f * (x,v) and
g(y,v)5g* (y,2v), and where W is the position-
independent Wronskian of the functionsf andg @11#. Then
one has

G̃R~x,y,v!2G̃R~x,y,2v!

G̃R~x,a,v!G̃R~y,a,2v!

5
g~y,v!W* ~v!2g* ~y,v!W~v!

ug~a,v!u2f ~y,v!

5
g~y,v!g8* ~y,v!2g8~y,v!g* ~y,v!

ug~a,v!u2 . ~B2!
The numerator of this last expression is itself anoth
Wronskian, and hence can be evaluated aty5a1 to yield

G̃R~x,y,v!2G̃R~x,y,2v!

G̃R~x,a,v!G̃R~y,a,2v!
522i Im

g8~a1,v!

g~a,v!

5
2v

i
, ~B3!

completing the proof of Eq.~6.5!.

APPENDIX C: EXPANSION OF TENSOR CORRELATOR

The coefficientsã jk in Eq. ~6.7! are given by the projec-
tion

ã jk~v!5
^^F̃~v!, f j ^ fk&&

4v jvk
~C1!

in terms of the bilinear form on the product space, whi
reads
^^P,Q&&[2E
0

a1

dx dy$P11~x,y!Q22~x,y!1P12~x,y!Q21~x,y!1P21~x,y!Q12~x,y!1P22~x,y!Q11~x,y!%

2E
0

a1

dx$P11~x,a!Q21~x,a!1P21~x,a!Q11~x,a!%2E
0

a1

dy$P11~a,y!Q12~a,y!1P12~a,y!Q11~a,y!%

2P11~a,a!Q11~a,a!. ~C2!

Substitution of Eq.~6.6! for F̃(v) into Eq. ~C1! yields

ã jk~v!5
1

4v jvk
H ~v j1v!~vk2v!E

0

a1

dx dy r~x!r~y! f j~x! f k~y!F̃~x,y,v!1 i ~v j1v! f k~a!

3E
0

a1

dx r~x! f j~x!F̃~x,a,v!1 i ~vk2v! f j~a!E
0

a1

dy r~y! f k~y!F̃~a,y,v!2 f j~a! f k~a!F̃~a,a,v!J . ~C3!
q.
Inserting any QNM expansion F̃(x,y,v)
5( lmb̃lm(v) f l(x) f m(y) such as Eq.~3.6! or Eq. ~6.4! and
invoking the relations~2.11!, ~2.14!, and~6.13!, the expres-
sion ~C3! can be evaluated as in Eq.~6.8!, which is what we
set out to show.

APPENDIX D: MODES OF THE UNIVERSE APPROACH
TO THE CORRELATION FUNCTION

It is instructive to rederive the correlatorF using the
modes of the universe~MU!. The MU expansion of the fields
reads@39#
S f~x!

f̂~x!
D 5(

l .0
S ~ul

†1ul !/A2n l

irAn l /2~ul
†2ul !

Dc~x,n l !, ~D1!

i.e., it is of the same form as Eq.~5.8! but in Eq. ~D1! the
sum runs over the MU frequenciesn l5 lp/L ~to leading
order ina/L!1), theul andc l being MU annihilation op-
erators and wave functions, respectively. Insertion of E
~D1! into Eq. ~3.4! yields
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F̃~x,y,v!5(
lm

c~x,n l !c~y,nm!

2Av lvm

3^$ũl
†~v!1ũl~v!%$um

† 1um%&

5(
l

c~x,n l !c~y,n l !

2v l
^ũl

†~v!ul1ũl~v!ul
†&

5
L

uvu
c~x,uvu!c~y,uvu!

3$u~2v!N~2v!1u~v!@N~v!11#%

5
Lc~x,uvu!c~y,uvu!

v~12e2bv!
. ~D2!

To arrive at the third line, we usedũl
(†)(v)52p

3d(v6n l)ul
(†) @upper sign forũl

†(v)] and defined the bo-
ad

nd

is-
te
ich
nti

nd

in
-
nd

f

ys
son occupation numberN(v)5@exp(bv)21#21. Compari-
son of Eqs.~6.4! and~D2! elucidates why the former factor
izes with respect tox andy: this is seen to be a consequen
of the nondegeneracy of the MU spectrum of the se
infinite string, as opposed to, e.g., a free string or one w
periodic boundary conditions. Evaluation ofc for the ‘‘di-
electric rod’’ of Sec. VIII at once shows that Eq.~D2! indeed
reduces to Eq.~8.9! in this case, providing a further compar
son among the various techniques of this paper.

Finally, in terms of the MU the local density of states
defined as

d~x,v![(
l

uc~x,n l !u2d~n l2v!5
L

p
c~x,v!2, ~D3!

and comparison with Eq.~D2! at once reproduces Eq.~6.9!.
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