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Second quantization of open systems using quasinormal modes
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The second quantization of a scalar field in an open cavity is formulated, from first principles, in terms of the
quasinormal mode€QNMs), which are the eigensolutions of the evolution equation that decay exponentially
in time as energy leaks to the outside. For any amount of damping, this formulation provides an exact
description involving the cavity degrees of freedom only, with the outside acting (deemmal or driven
source. Thermal correlation functions and cavity Feynman propagators are thus expressed in terms of the
QNMs, labeled by a discrete index rather than a continuous momentum. Single-resonance domination of the
density of states and the spontaneous decay rate is then given a proper foundation. This is an essential first step
towards the application of QNMs to cavity quantum electrodynamics phenomena, to be reported elsewhere.
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I. INTRODUCTION purpose of this paper, in short, is to develop a formalism

In this paper we are concerned with quantum fields ir]whereby field quantization can be implemented in terms of

open cavities—the obvious example of ultimate interestNeSe QNMSs, and to define and study operaﬁqrsajjr for
would be electromagnetic fields in optical cavitid and  these modes. Specifically, one wishes to express field corre-
the associated problem of cavity quantum electrodynamicftion functions, Feynman propagators, and other quantities
(CQED). Such systems are open because energy leaks to tfie terms of the QNMs. The dissipative nature of the system
outside(e.g., via output couplingand as dissipative systems IS then contained in the QNMs themselves.
cannot normally be quantized on their o\i2]; rather, one The advantages for CQED would be obvious. The sim-
must also consider the bath into which energy escapes, ggdest phenomenon to which such a formalism can apply is
that the total universe is conservative. Thus such cavitieghe well-known enhancemeffor suppressionof spontane-
say, of linear dimension, can be embedded in a universe of ous decay rates when the emitted radiation falls(@nbe-
dimensionA —«. One can then quantize on the modes oftween resonance§3]. Resonance domination of these pro-
the universe, which are labeled by a wave numbepaced cesses has been discussed starting with the heuristic
by Ap~m/A—0. The field quanta are then destroyed orargument due to Purce[4]. He proposed that the Fermi
created by operatom(p) anda’(p), and higher-order pro- golden rule should be generalized: the density of states per
cesses involve integralsdp over internal loops. unit volume, instead of the usuay(w)=w?/(w?c®) for

On the other hand, these cavities often have a very smallacuum(wherec is the velocity of ligh}, is to be replaced by
amount of Ieakage,_ characterized by a parameteQ*_1 d(w)~D/(2yV) for a D-fold degenerate QNM of widthy
<1, where the quality factor of the cavity can be as high ag, 5 cavity of volumev. This leads to an enhancement factor
Q~10° or more. If this is the case, the intuition developed ¢ K=d/do~(1/87)DQ(\3/V) for spontaneous emission
from aclosedcavity, also of lengtta, should be relevant. A, ye5onance, whebeis the wavelength of light emitted and
closed cavity is a conservative system, with normal mode@ is the quality factor of the cavity. The essence of this
(NMs) labeled by adiscreteindexj=1,2,.., where the wave argument is that each resonance counts as one state, i.e., in a

g%?:grc;iﬁj Najrgldiist?op;;rgi' d I(::Irzlgte?jugmg Ienr su;:: da suitable sense it carries unit weight. While intuitively plau-
Y y y operatp sible, this statement is difficult to justify formally—since the

+ : ) . .
aj, and higher-order processes involve discrete sais entire concept of a state, i.e., an NM, falls apart in an open

Can quantum fields in aopencavity be described in a simi- system. However, this argument, and its many variants and
%xtensions, would find natural expression in a framework

lar way—in terms of discrete modes and the correspondin
operators? If this is possible, computations will be simplified : : :

P P P P that quantizes on the QNMs, and we shall in particular show
explicitly below that each resonance carries unit weight.

and will correspond to physical intuition, with each tefm

associated with a cavity “mode.” The connection with the X e 4

limit of a closed cavity €&—0) would also become manifest. N S€c. II, the QNM expansion afassicalfields outgoing
Quantization of a closed system relies on its NMs; theffom a cavity is reviewed. The classical results may be orga-

counterparts in an open system are the quasinormal mod&¥ed into two levels. First, under conditions to be specified,

(QNMs), which are again factorized solutions, the Green'’s functiorts can be expanded in terms of QNMs.
Second, one can try to expand the outgoing classical figlds
¢(X,t):fj(x)e—iw;t, (1.2 in terms of QNMs, and to establish a linear space structure

similar to that for conservative systems. In order to do so, it

where Ime;<0 because of the loss of energy. Each QNMturns out to be necessary to make use of a two-component
corresponds to a resonance, with a width=|Im «j|. The ~ formalism, dealing withp and the conjugate momentugnat
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the same time. The linear space formalism is more elegantliscussed in the approximation of domination by a single
but in its simplest form is limited to only one dimension resonance, providing justification for Purcell’s heuristic ar-
(1D). gument[4] on the enhancement of spontaneous decay rates.
The quantum formalism can likewise be approached infhe advantage of using the nondiagonal expression is again
two ways. In the first, which we shall call the Green’s- emphasized.
function method(Sec. 1)), one focuses or-number corre- In Sec. VlII, a very simple example is studied explicitly,
lation functions and propagators without explicitly expand-and its correlation function and energy density are expressed
ing the field operatoxs in terms of QNMs. The key idea is [N térms of a sum over QNM contributions.

that the retarded propagat@® of the quantum theory is " ??r:ne final remarks are dther:. gilvevr\}tig ?’efd IX..::]Ve stress
exactly the same as the classical Green’s fundBom@and the atthis paper s concerned entirely elields, either as

latter has a QNM expansion. On@" is obtained, it is a model of the free electromagnetic field in an optical cavity,

straightforward to derive a QNM expansion for the correla—f[)hrec"ilrs ﬂ;e Z?gh'%dgr a?g;':'gg '2I0rcelfjs"e|!1rt]s f%:]‘ r']f.‘tﬁfrfgp dger
tion functionF as well. Y, €.9., propag ingredi in hig

In the second, which we shall call the field expansion':eynm""n diagrams. The development of the interacting

method, one tries to establish an expansion of the quanturtﬂeory and its application to CQED phenomena will be given

field ¢, in parallel with the linear space structure establisheijsrhsjﬁ]r‘{% partial account of the present theory has
for classical fields. This allows us to interpret the expansio 9 ’

coefficientsa; and aJ-T, roughly speaking, as generalized an-
nihilation and creation operators for the discrete QNMs Il. CLASSICAL FIELDS
However, before doing so, it has to be recognized that quan- |, this section, we summarize the QNM expansion for

tum fields cannot be constrained by the outgoing waveassical fields. In this paper, we deal with scalar fields in 1D
condition—for the simple reason that zero-poiahd ther- .

mal) fluctuations must contain an incoming component. £, closed, linear systems, eigenfunction expansions,
Thus, the first step in developing this method, presented i,geq on the eigenfunctions or NMs of their evolution op-
Sec. IV, Is to generallzg the'f|eld expansion to hami@m- erators, are a tool of vital importance in theoretical physics.
ing waves as well. With this generalization, one can thenyever, open systems are not directly amenable to an NM
subject the fields to canonical quantization in Sec. V. This i$n5)vsis. Examples of open systems include optical cavities
done by starting with the universe, a closed Hermitian sySpy} 3nq finite regions of space near astrophysical objects,
tem for which the quantization is unambiguously defined.t.q \which gravitational waves can escajg9]. In these
Then, in parallel with the usual removal of bath oscillatorssystemsl any initial state decays in time, so stationary NMs
[2], the outside degrees of freedom are eliminated from they, ot exist. As the simplest example, we shall be concerned

equations of motior{5]. The results will be equations of i the real scalar wave equation in one space dimension,
motion and commutation relations for thiéscreteoperators

a anda}r , in which the effects of the outside bath are clearly p(x)at2¢= 5§¢>: (2.1)
displayed: the loss of energy of each mode by leakage, and
the pumping of each mode by the quantum or thermal flucyy ,died in a “cavity” O=x=a, with the nodal boundary
tuations from the outside. condition

The formalism is then used to evaluate the correlation
function F in Sec. VI, and the results are compared with B(x=01)=0 2.2
those obtained from the Green’s-function method. Interest- ’
ingly, the results appear to be different—those derived fro
the Green’s-function method contain a single simover
the QNMs, while the field expansion method yields a double Ve
sum X with off-diagonal terms. The two are, however, ¢'(a’=—¢(@at) 2.3
shown to be equal through an identity G¥. Recalling that

Mht one end but with the outgoing one

&t the other. The latter condition states that, just outside the
A . . cavity boundary, the field¢(x,t) is an outgoing wave
second componern |s.con5|dered at the_ same tlmg, we next¢(x_t); the condition is specified a* because, as we
show that the expansion of the correlation functfois also shall see below, one is often concerned with models in which
unique if we consider$ as well, giving the nondiagonal there is a singularity ip(x) atx=a, leading to a possible
form. The d_ensity of sta_tes, which is intimgtely related to discontinuity in ¢’(x) [10]. The boundary conditiori2.3)
the correlation function, is also expressed in terms of QNMstyrns the cavity into a dissipative system that is leaky but not
in particular, it is shown that up to corrections©{Q "),  absorptive. The model2.1) has been widely used as the
each resonance carries unit weight in the density of states.scalar model of electromagnetism in an optical cayity.
The results on the correlqtion function are then used, inviore physically, the 1D nature is realized in Fabry-Perot
Sec. VII, to evaluate and discuss the Feynman propagat@avities with lengths much smaller than the lateral dimen-
GF, which is the fundamental building block for CQED. sjons, and the scalar field model is rigorously applicable to
Again, equivalent diagonal and nondiagonal forms are obthe transverse electric sector.
tained. Particular attention is paid to the equal-space propa- For the open systerf2.1)—(2.3), the eigensolutions, la-
gatorGF(x,x, »), whose imaginary part is related to the life- beled by an index, have the form(1.1), with the QNMs or
time of an excited atom placed at This quantity is cavity resonance§; satisfying
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[3)2(+p(x)wj2]fj:o (2.4  for O=x,y<a, andt=0, where thef;’s are normalized ac-
cording to Eq(2.12) below. Thus, the dynamics is contained
and the boundary condition@.2), (2.3 translating into entirely in the QNMs, leading to a simple method of obtain-
ing the retarded propagators and quantum correlation func-
f,(0)=0, fj’(a+)=iwjfj(a). (2.5  tions, as sketched in Sec. Ill.

Second, realizing that the wave equati@hl), like any
It is easily verified that Imy<0, so that the solutiofil.1) is classical Hamiltonian problem, requires both position and

indeed decaying in time. Furthermore, the frequenaigs momentum to be speAcified as initial data, one introduces
which we suppose to be ordered according to increasing refinction pairs ¢=(¢,¢)" with the conjugate momentum
parts, are spaced hyo~ 7/a, approximately as for a con- ¢=p¢, so that for eigenfunction=(f; ,—ipw]-fj)T. The
servative system of siza. With the possible exception of space of all function pairén general allowed to be complex
modes with Rew;=0, the QNMs always occur in pairs with satisfying the boundary condition®.2) and (2.3) will be
w_j=—o} , and one can choode ;= f . While the field¢ ~ denoted ad'—the space of outgoing waves. _
is real, the eigenvalues and eigenfunctions are complex; this Using these pairs, one can prove that the time evolution
is the reason for the pairing of modes. generated by Eq2.7) can be recast in the forifii4]

The usual formalism concerning eigenfunction expan-
sio_ns relies on th_e hermiticity of 'Fhe evolution operator, ¢(t)=z a(vf;, (2.9
which only holds in the conservative case, and therefore ]
breaks down for open systems. One possible resolution is to ) N )
embed the cavity into a “universe” €x<A with a nodal Where the expansion coefficients are given by
condition atx= A — o, and study its NMs—the modes of the

universe. Namely, the syste(@.1)—(2.3) is the restriction to aj(t)= i<fi (1)) (2.9
x=<a of the problem(2.1) on the half-line Gsx<«, if one 2w;
t . i -
sets with a;(t)=a;(0)e"'i" and thebilinear scalar productfor
p(x>a)=1 2.6 Sxel,

a+

and with the extension of the initial conditions to the “out- (g,)(}:i[ f dX[Z(X) x(X)+ () x(x)]+ (@) x(a) } .
side” x>a obeying ¢'(x>a,t=0)=-¢(x>a,t=0). 0 2.10
However, this has the obvious disadvantage of having to '
work with a continuum of state¢spaced byAw~m/A By simply lettingt|0 in Eq. (2.8) one arrives at awo-
—0) as opposed to the discrete set of eigenfunctions in theomponent expansiofor an arbitrary real¢peI' [15,16].
conservative case. Besides, the closed system of(BEd$-  This expansion makes the completeness of the QNMs mani-
(2.3 shows that even in the presence of dissipation the timgest. The normalization used in E¢€.7)—(2.9) can be con-
evolution of the cavity can be studiedthoutexplicit refer-  cisely expressed as
ence to the outside, which is the principal goal of the pro-
gram of second quantization of the open system. (f;, fj)=20;. (2.11

Previous work(see[11-13 and references thergimas . ] ] o
established that, in spite of the lack of hermiticity in the It is seen that Eq2.11) in general is not real, underlining the
conventional sense, an eigenfunction expansion for outgoingfifference between the produ@ 10 and a conventional one
waves in classical open wave systems can be formulated #Volving complex conjugation. The fact that E@.11) is
terms of the cavity degrees of freedom only, overcoming thdilinear als_o serves to establish a phase convention for the
disadvantages of the modes of the universe approach. THgave functions. _
sufficient conditions for this QNM expansion are as fol-  Upon introducing the two-component evolution operator

lows. (a) The functionp(x) has at least a step discontinuity 0 p(x)!
at x=a. This demarcates a well-defined cavity regiorib) Hzi( P ) (2.12
The function p(x) has no tail outside the cavity, i.e., aﬁ 0 ' '

p(x>a)=1. This condition ensures that the outside does not
reflect outgoing waves back into the cavity, enabling thethe cavity evolution(2.1) can be written asd;p=H, in
complete elimination of the environment from the equationsstriking analogy with quantum mechanics. In this notation,
of motion. These conditions are satisfied for optical cavitieghe definition(2.4) of f; takes the formHf;=w; f;. The
bounded from extended vacuum by a sharp material interoperatorH can be shown to be symmetric with respect to the
face. Under these conditions, the eigenfunction expansion &rm (2.10, i.e.,
exact for any amount of dissipation.

The completeness of the QNMs can be pursued at two (GHXY=(x.HY (2.13
levels. First, one shows that the retarded Green’s function

the system has the representation c’1I0r any ¢, xel'. This analog of Hermiticity holds even

though the system is not conservative. The symmetrid of
yields the orthogonality relation

f;008(y) .
Gy D=2 5, e @9 (f;, £)=0 for w;#w, (2.14
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in an immediate transcription of the usual proof, leading toWe shall devote attention #6, because the physical quanti-
the uniqueness of the expansion. Incidentally, an expansiaties of interest in quantum field theory can often be formu-
such as Eq(2.8) but involving the first component alone lated in terms of correlation functions, at either zero or finite
would not be unique. temperatures. For example, the Casimir force is merely the
Instead of its present formulation as an orthogonal expanvacuum expectation value of the electromagnetic stress ten-
sion involving a generalized bilinear scalar product, the sesor, which is an equal-time equal-space correlation function
ries(2.8) can also be regarded as a biorthogonal expansion iof two field operators. The spontaneous decay rate of an
terms of the standard inner produdf7]. The power of this atom in an excited state is, in the golden-rule approximation,
latter, slightly more involved method shows when severakelated to the correlation function of two electric-field opera-
QNMs mergdg 18], a possibility not considered in this paper. tors.
It is appropriate to contrast the two methods of approach- Since the correlation function is related to the retarded
ing the classical theory, since they respectively underpin theropagatof20], one gets
two methods for dealing with the quantum case. The expan-
sion of the Green’s function is easy to derive, and is readily - -2 ~
generalized to higher dimensions; however, in itself it does Fxy,0)=7—g=p Im GR(x,y,0) (3.9
not lead to auniqueexpansion of the field, nor to concepts of
orthogonality. The two-component approach based on Eq. )
(2.8) is more elegant, exhibits a deeper resemblance to con- _ | 2 fi0fj(y) (3.6)
servative systems, and most importantly leads tonaue 1-e Pe 4 wj(wz—wjz)' '
expansion in terms of orthogonal functions. The two-
component expansion can in principle be generalized tgpe real-time correlator can be obtained from E36) by
higher dimensions by treating each angular momentum seguntour integration, yielding
tor| as a 1D radial probleri9], but the degree of complex-
ity increases with. Thus each method has its own merits; f00F(y)

both will be pursued below, and the results compared. = R D hn b Ad—
Wi pursu p F(x,y,t) 2 Zw]_(l_efﬁwj)

e—ﬁwj 0(—t)—iw]—|t\

Ill. GREEN'S-FUNCTION METHOD e Hmltl

B

t2 [GR(y, =i pm) =GO, ) .

The quantum mechanics of the cavity plus outside is
specified by the Hamiltonian

3.7
0 o g 2 2 . . . . .
H:f dx h(x):f dx ‘ﬂ+ E (ﬁ) (3.1) '~I'he first term in this formula is due to the QNM poles in
0 0 2p  2\x F(x,y,w); the second term, which has no counterpart in

) . ) , _ GR(x,y,1), is caused by the Matsubara polesFifx,y, w) at
together with the canonical equal-time commutation relat'onfrequenciesumz27-rmT. This very simple derivation has
. the advantage that it goes through in situations where the
[¢(X),d(y)]=i6(x—y). (3.2 two-component formalism may be more complicated.
In principle, physical quantities can be expressed in terms
Time evolution is then generated by means of the Heisenbergf F—bilinear quantitie{such as the energy densitys lin-
equationA=i[H,A] for an arbitrary operatoA. However, ear combinations of and its derivatives, and other quanti-
instead of the equations of motion for the quantum operatorgjes involving products oF’s. For example, the energy den-
in this section we focus first on the retarded propagator  Sity is

GR(x,y.)=—i0(t){[d(X,1),b(Y)]), (3.3 (h(x))=3[—p(X) T+ 3,y IF(X,Y,D]x=yi=0- (3.8

in which ¢ is of course to be regarded as an operator, an¢jowever, this quantity is divergent. Subtracting off the zero
(---) denotes the expectation value at a finite temperafure point, we consider

=1/B; throughout we také& =kg=1.

The central idea is that this propagator defined in terms of U(x,T)=(h(x)}—(h(x))7—0
the quantum fields can be evaluated without explicitly intro- a
ducing an expansion for the field operataps by simply =1[—p(x)d+ Fx0yIFs(X,Y,)|x=yt=0 (3.9
noticing thatGR(x,y,t) is exactly the same as the Green’s
functionG of the classical wave equati®0], which has the i, terms of the subtracted correlation functibg=F — Fy,
expression(2.7) in terms of QNMs. This rela'gionship be- whereFo=lim,_.. F. The limit B— is best taken in Eq.
tween G* and G follows from the commutation relation (3.6) prior to Fourier inversion. We further make use of the

(3.2. _ ~

In terms of GR, it is straightforward to compute the equi- expansion foiG™ to get
librium correlation function £ 00 (y)
L Cw, @i

J

Fo(X,y,t) =
F(X,y,t)=(d(x,t) p(y)). (3.9 sOey.0 2



PRE 58 SECOND QUANTIZATION OF OPEN SYSTEMS USIG . . . 2969

| with ¢, satisfying the incoming wave conditios,= i, ,
Ci()=—F—|po—7 T 0(—Rew) S - . .
2 |efUi-1 while ¢/ ,= — ¢ou. FOr the cavity subsystem this decompo-
R sition leads to the boundary condition

I M€ Fm

"B pir s ¢'(a" 0+ @t n=2dp(at)=b(t), (4.2

where the driving forcd [see Eq(4.4) below for its namé
being determined by the initial data, is supposedly a known
(3.11) function (at least in a statistical sensinat characterizes the

' waves incoming from the outside. Inside the cavity, the field
where this and subsequent formulas Farare written only IS then expanded in terms of QNMs by H@.8) with
for t>0. Here,E{(2) is the exponential integral function

P
—Ee'“’itEl(let)—Ee ""JtEl(—ijt),

+to g7V . N
E = —du, 3.1 a ~ .
1(2) L —du (3.12 :iUO dx (0L B(X) —ip(X)w;$(X)]
]

in which the integration contour is defined not to pass
through the origin and the negative real axis; on that semi- +fj(a)¢(a)]_ 4.3
axis, the function is defined as the principal value. We fur-
ther defined(0)=3. . . _ .
Alternatively, for greater formal similarity to the conser- 1Nnat is, weretain the expansion formula and the inner prod-
vative case, Eq(3.1]) can be rewritten as uct definition and_notatlon even though¢ I'. As a conse-
guence, the sum in E@2.8) will in general not converge to

, f,00f;(y) ~ ¢ at x=a, the point where the boundary condition is im-
FS(X’y’t):ReE>O 2R o Ci(t, 313 posed. Nevertheless, the sum for the first component con-
i . verges to¢ everywhere, while the sum for the second com-
ponent converges tb everywhere except at=a [22]. (This
= 2P ,E 2 Ty is most easily appreciated by noticing that upon changing
) at just one point, the resultant wave function can be made to
i i _ lie in I'. In the Hilbert-space setting of Refd7,18, I' is a
- 4—6'”itE1(i wit)— —e "I'Ej(—iwjt). (3.14  dense vector subspace, not a closed subspace of codimension
™ 4 Y o .
1; this clarifies further why there is no extra degree of free-
dom associated with incoming waveshis flaw on a set of
measure zero does not lead to problems, however, for the
projection formula(4.3) renders the coefficienta;(t) well
pefined irrespective of the convergence of the s¢el).
The equation of motion fog; will now be derived. By
differentiating Eq.(4.3) with respect to time, and then inte-
grating by parts, one obtains

The prime on the sum in Eq3.13 signifies that terms with
Re w;=0 are to be taken with weight.

The actual evaluation dfl(x,T) needs some care in the
j—o part of the sums. These details, and the very simila
problem for the calculation of the Casimir force, will be
given elsewhere.

IV. INCOMING WAVES

. i
(D) +iwa(t)==—F (a)b(t). 4.4
The expansion of a classical field sketched in Sec. Il is () +iw;a(t) 20 (@b(t) 9

restricted to outgoing waves, i.e., e, satisfying Eq.

(2.3. In preparing the ground for the expansion ofjaan-  In contrast to the case of pure outgoing waves, there is now

tum field, it is necessary to remove this restriction, for thean extra term on the right-hand side: each QNM is driven by

simple reason that the zero-point quantum fluctuations wilthe “force” b(t), and at the same time decays because of

inevitably contain incoming waves as well. Moreover, onelm ;. The coupling to the “force” is determined by the

would wish that the ensuing theory should be applicable tgurface value of the QNM wave functidi(a). This equa-

situations where there is an incoming pump field. tion of motion will survive quantization, to be carried out in
Thus, we study the wave equati¢®.1) for the system the next section.

together with the outside “bath,” i.e., on the half-line

x>0, with p(x) satisfying Eq.(2.6) and the boundary con- V. FIELD EXPANSION METHOD
dition (2.2). The initial conditions are now arbitrary and ac- o
cordingly the outgoing boundary conditio2.3) is aban- A second approach to second quantization proceeds more

doned, i.e., the restriction @b to the cavity need not lie ifi.  explicitly by first promoting ¢ and ¢ to operators[23].
For the outsidex>a [where p(x)=1] the initial data are These fields may be regarded as operators for the entire
decomposed as “universe,” which is a conservative system to which canoni-
cal quantization can be applied. The same projection formula
d(x>a,0)= ¢+ douts (4.1) (4.9 as in the classical case now defines #ys as Hilbert
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space operators, obeying the equation of motib#). The above commutators show that, if we define, for
The crucial point is that the field commutation relation j>0,
(3.2 and the projection formul&4.3 now lead directly to

commutators for these coefficients, viz., a;j=\2w;a;,
t_
(3= o[ fj ) fio h)] aj=\2o0iaj, (5.7
then in the conservative limit these should reduce to the an-
=3 {j dx dy (f; ) FN[D(X), P(Y)] nihilation and creation operators, respective]. Indeed,
wj@ the QNM expansiori2.8) then takes the form
+ 100 ¢(x), ¢(y)]) ¢ (a+%ﬂ¢——
at A ipyol2 (a o) fi, (5.9
+ [ ax o0t @ b0, o(a)] ‘ |
. the standard NM field expansion for a closed cayit§]. For
a o finite damping, however, the operataas have mixed cre-
+f0 dy fi@)f(y)lé(a), (). G- ation and annihilation character.

In short, we have established an expansion of the quantum

In these equations and ¢ areq numbers, whilef; ,f, arec  field ¢ (and its conjugate momentug) in terms of opera-
numbers. The two surface terms on the last line cancel aors a; anda , and then obtained equations of motion and
long as thes function at the boundary of the integration commutation relations for the latter. This, in principle, com-
interval is mterpreted COﬂSIStently In the first line, the com- p|etes the program of second quant|za[|0n and it remains to
mutation relation(3.2) gives 5(x—Yy) and cancels one inte- yse these results to compute correlation functions and propa-
gration. One is then left with gators, which we proceed to do in the following sections.
e (" However, the deviation of the commutatos.3) and
[a 2= 4k j f dx p(0)f;() Fi(X) (5.2 (5.5 from the cqnomcal form prevents th_e c.ons.tructlon of a
oF Fock space, as is the case for quantum dissipative systems in
general[2].

i(w;j—wfj(@)f(a)
= , 5.3
4o;o(wj+ wy) ©3 VI. CORRELATION FUNCTIONS

where the second form follows from the first by means of the The formalism derived in the last section for expanding
orthogonality relation(2.14, and will be useful later for the quantum fieldp in terms of the operators; andal will
comparison with results from Sec. VI. be applied to the calculation of equilibrium correlation func-
The linear-space structure for open systems involves pradons, yielding discrete representations for the cavity cor-
jections based on the generalized inner prodRdt0, which  relator F in the presence of dissipation. Section VI A con-
is bilinear rather than linear in one vector and conjugate lintains the calculation of per se and Sec. VI B compares the
ear in the other; thus the expression in E8}2) involves an  results with those obtained from the Green’s-function ap-
integral overf;(x) f,(x) without complex conjugation. How- proach in Sec. lll. In Sec. VI C we evaluate and discuss the
ever, for the sake of a more transparent comparison with thdensity of states.
conservative case, it is useful to rewrite these expressions by
changingj——j and usinga_j:aj*, w_j=—oj, andf_; A. Field-field correlator

=f* to give . .
! 9 In Secs. VI to VIII we take the system to be in equilib-

at rium. Then, the initial conditions for Eq4.4) are irrelevant
f dx p(x)f]*(x)fk(x) (5.9 and the dynamics are completely specified by the driving
0

Wi
[a]T vak] =

4“’}c Wk forceb, i.e.,
(o] +wff (@)f(a) if(a) [t -
— . — I ploi (' —=t) ’
Gt o of —a) (5.5 a(t) 2a, f_wdt e'“i b(t"). (6.2

The result in the form(5.4) reveals the conservative limit

: o ) . The nonzero imaginary part of the, renders the integral
most clearly; in this limit the integral would simply be ginary p ) g

rapidly converging, in contrast to the conservative case. Fou-

il - ; _ _ : :
Comparison of Eqs(5.4) and (5.5) shows that rier transforming and taking expectation values then lead to
|f;(a)|2 = ora f,(a)f(a) e e
2lim ] 50 R T P A

in the conservative limit. A more explicit proof is given in Sinceb is fully specified by theéncoming waves from the
Appendix A. free string a<x<w, it does not “know” about the cavity
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X=<a, so one can use the free infinite-string correlation func-while the nondiagonal forn6.4) is manifestly factorizable:
tion to calculate its spectral density from the definitid?  F(x,y,0)=A(w)x(X,0)x(y,—w) [26]. Anticipating a

as similar structure for Feynman propagators, the nondiagonal
~ o~ form permits a quantum in one modgeo propagate to an-
(b(w)b)=—(dx—10)(D(X,0) B(Y))tredy=x other modek, while the diagonal form implies that the mode
cod w(x—y)] index is “conserved.

The expansion of correlations involving alone is not
unigue, on account of the doubling of QNM$ &nd — )
compared to NM$12,13. As discussed in Sec. Il, it is more

(6.3 natural to considetp=(¢,¢)T, which leads to a unique ex-
pansion. Thus we define a tensor field-field correlator,

SO e |

_ 2w
S 1-e P

For a simple check, antisymmetrize E§.2) in j andk
and perform the inverse Fourier transform to reproduce Eq. = —/7 ®
(5.3 (for the expectation value of the commutatdnciden- (%Y, 0)=(d(x,0)® $y)

tally, by assuming other forms fdib(w)b), the theory ac- _((¢(X,w)¢(y)) <¢>(x,w)fj>(y)>)
(d(x,0)B(y)) (d(x,0)B(y))

commodates various incoming pump fields. =

Given the two-point functiori6.3) for the driving force, it
is straightforward to compute the two-point function for the 1 iwp(y) .
response, namely the field-field correlation function inside :< )F(x,y,w),
the cavity. This now merely requires summation, that is,

—iwp(X)  ®*p(X)p(y)

combination of Eqs(2.8), (6.2), and(6.3) leads to (6.6)
~ w
FXY.0)=T—7 which can be expressed as
fi(a)fk(a) £ 0f(Y) 5 B
T 2000 0;—0) (ot @) 100K Fouy.0)=2 ag(@)f0@fy), 6.7
(6.4

The above derivation leads to a clear physical interpretaltioIwhereajk is evaluated to béAppendix Q
of the pole structure of Ed6.4) in the complexw plane: the
Matsubara poles ab=iu,=2i7mT (me Z) arise from the
thermal character of the incoming noise, while the QNM
poles correspond to cavity resonances excited by this noise.

of;(@)f(a) _
1—e7'8“’)ijk(wj —0)(wtw)’

()= 2 (6.8

B. Comparison of two forms for the correlation function that is, the nondiagonal expansi¢d.4) is the unique one

It will be noticed that we have obtained two different that generalizes to the tensBras in Eq.(6.7).

QNM expansions foE, namely, the double sum in E¢6.4)
and the single sum in E¢3.6). We next prove their equiva-
lence without invoking the QNM expansion of a quantum
field. Another important quantity is the density of states, which
To do so, we rely on the identify25] figures prominently in the heuristic argument of Pur¢dll
and otherd27]. The local density of stated(x,w) [cf. Eq.
(D3)], given below only for real positive, is related to the

correlation functior by

C. Density of states

. . 20 .
GR(X,y, ©) — GROXY, — 0)= I—w GR(x,a,0)GR(Y,a,— )

(6.9
2w ~R 1) L~
for x,y=<a. This identity, proved in Appendix B, has no d(X,w)=—7 Im G (X,X,w)=;(1—e FoYE (XX, ),
nontrivial counterpart in closed, conservative systems. For an (6.9

interpretation, notice that GR(x,y,w)—GR(x,y, — w)
>1m GF(x,y, ) vanishes in the conservative limit and hencewhich allows expression of this important quantity in terms
is a measure of dissipation, which the right-hand side states P b q Y
. . of the QNMs. From Eq(3.6) one gets
as taking place exclusively at the surface a.
Given this identity, the equivalence of the two expres-

sions forF follows simply by canceling the Bose prefactors ® sz(x)
in Egs. (3.6) and (6.4) and comparing the result with the d(X,w)=; 2 Im w(w—)' (6.10
Fourier transform of Eq(2.7). ] e
Although the two forms are equivalent, each has its own
attractive properties. The diagonal for(8.6) is simpler, while the nondiagonal expressi@6.4) gives
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2 f(a)f (a) VIl. FEYNMAN PROPAGATOR
d(x,0)= 5— > IO fO0R(0 (6.1

TR wjolwj—o)(oto)

A. Derivation of the Feynman propagator

1 f.(a)f(a) Another important correlation function is the Feynman
(a)fy(a

T2m % mfi(x)fkm- (612 Propagalon

| G (x.y.t)= =T {p(x. D) h(y)}). (7.1

The second form results from the first by use of the identity ) ) _ ) _
in which 7 denotes time ordering. Taking the Fourier trans-

fi(x)f;(y) form of the definition(7.1) leads to a direct relation to the
> Y 0 (6.13  correlator(3.4),
j i
. . ~ do' 1 1
which follows from Eq.(2.7) by lettingt]O. GF(x,y,w)= _f —{— 4+ — :
Superficially, the diagonal form is simpler. However, if 27 o' to—is o' -o-is
we take a single resonance approximation, BdL0 yields, ~ ,
with one termj, XFxy, ). (7.2
© £2(x) We shall limit the discussion below b= 0. Substitution of
d(x,0)~ — Im ———, (6.14  the right-hand side of Eq6.4) into Eq. (7.2) yields GF as
T wj(wj— o) [26]
which is not positive definite. On the other hand, for the
nondiagonal form, the a iat imation is to takeg i fi(@)fy(a)
iag rm, ppropriate approximation is to takegFy y o) =—i>
onej andk=—j in Eq. (6.12), leading to & 2wjo( o+ o)
|fi(@)f;(0)[? x| 0(w) — 46— w) —X Lt f
~ - i) fi(y).
d(x,@) 277[(a)—Rewj)2+(|m wj)z]' (6.15 W oto) !
L : iy . (7.3
which is manifestly positive and, moreover, Lorentzian.
From this expression one finds, to leading ordeflin w|  The cavity Feynman propagator can also be expressed in
=1, that diagonal form, by substituting E¢3.6) into Eq.(7.2). Again
. taking T=0, this leads to
a
d f dx p(x)d(x,w)~1, 6.1
J o] dxpoane (610 . 1o f00f(y)
Gr(xy,®)=5 > PRI (7.4
where thew integral is over one resonance. This statement is ] . .
readily derived from Eq(6.15 by using Eq.(5.6) and the 1 £ OO T(y)
fact thatfdx p(x)|f;(x)|*~1 for a narrow resonance. Recall ==> #, (7.5
that, in the modes of the universe appro4ef], the unit 25 |ol(|o|-w)

weight of the resonances emerges simply as a numerical re-

sult, and is difficult to understand theoretically. Here thefor real w. It is stressed that these forms as single sums exist
same resul(in 1D) is justified analytically, and moreover, even though7{a;(t)a.})# §; .« in general. The forn{7.5

one can in principl€a) estimate the corrections due to other for GF has been derived from Eq7.4) by means of the
resonancesgnote that there is no “background” apart from QNM identity (6.13. The second form with its divergence
the QNM contributions (b) calculate the corrections to [29] at w=0 is less convenient than the first. It has been
higher order iny, and(c) discuss the local density of states included to show that caution is needed when speaking about
d(x,w) rather than the integrateftix d(x,®). Incidentally,  “the contribution of one QNM.” In fact the two summands
this discussion shows that of the two equivalent fof141)  are almost equal ifw|~ w; ; such resonances are seen to be
and(6.12), the latter is the more appropriate, since it leads toexclusively associated to terms witke 0.

a finite integral overw in the single-resonance approxima-  All of these equivalent expressiofig.3), (7.4), and(7.5)

tion. can be written generally as
One can derive another sum rule,
v © GRxy,w) =2 f;(0)Aj(@)fi(y), (7.6)
f d(X,0') do'~ , (6.17) a
0 mp(X)

with different forms forA; . This has an obvious diagram-
for large w. This second sum rulg27] states that the states matic interpretation: the field at(y) couples to the QNM
are merely redistributed without changing their total numberj (k) with a vertexf;(x)(f.(y)), and the QNM propagates
However, this sum rule is not immediately useful when ex-from modej to modek with an amplituded;, . This may be
pressed in terms of the QNMs, and will not be further dis-compared with the more familiar case of an infinite conser-
cussed here. vative system, say,
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~ dp ‘ keeping both terms and using the ensuing cavity propagator
G'(xy,0)=| s—e "PA(p,w)e. (7.7 to compute the self-energy of a two-level atom leads to a

2
renormalization of the level splitting that is guaranteed to be

goal of the present second-quantized theory is to stud!ﬁted- ~
cavity-atom interactionf6], often referred to as CQED. The Moreover, D,y does not obey the equally fundamental

objective is to establish a set of “QNM Feynman rules,” in jnequality ImD(w)<0 on the real axi§20] [see alsd7.12
which each line in a diagram is rgpresenﬁed not by a Com'nubelow], which D,, satisfies term by term. Violation of this
ous momentum, but by one discrete indé a pair of inequality in general leads to a retarded atom propagator that

them—not only for computational convenience, but also be'has poles in the upper hadf plane[6], signifying an un-
cause each term can be associated with a cavity resonan ysical instability '

Such a discrete representation is especially useful for micr " To be sure, in spite of these crucial differences between

scopic cavities, where the resonances are widely spaced 4B thei id _ in th
frequency. The above results are crucial for establishin?faa.n Dry their residues dt‘f"_.“’i agree in the conserva-
ive limit, in which the domination of a single QNM be-

these Feynman rules. . E fo i h
The possibility of alternate expressions for the propagatorOmes rigorous. For a proof it suffices to note that

2 . . . . .
may recall a similar situation with gauge theorigao],  |1i(®)l Az“mé‘_’JPl '”dthr'ls limit l(Appendlx A. L
though the reasons are quite different, We have discussed the single-resonance approximation to

both the density of stated(x,w) and to the equal-space

propagatorD(w). In fact, the arguments are equivalent,
which can be appreciated physically from the fact that they
While the use of the Feynman propagators in an interacthoth relate to the decay rate, and mathematically from the
ing theory will be presented elsewhd®, it is nevertheless following identity for real positivew:
profitable at this point to consider the very simple example
of an atom coupled to the field at a fixed poixt in the 0 o~
dipole approximation and for weak atom-field coupling, the d(x,w)=— T Im D(w). (7.12
decay rate is related to the equilibrium equal-space propaga-
tor In several places we have remarked that the nondiagonal
- _ QNM representation has some nice properties, and is in fact
D(w)=G(x,x,). (7.8)  the unique representation if the fiell and the conjugate
. . . _ momentum¢ are considered together, for example, in the
In particular, we shall be interested in the single-ionsor correlator6.7). There are of course many ways to
resonance approximation fd». The obvious choice is to understand why the correlator is nondiagonal; one of the
take a single term of the sum in E..4), i.e., most direct is via Eq(4.4), which shows that all the mode
coefficientsa; are driven by the same ford¢xt), so in gen-
eral different coefficients will have phase coherence and
hence a nonzero correlation. Incidentally, this nondiagonal
nature isnot a quantum effect, since the property survives at
The alternative is to start from E¢7.3), and retain only the high temperatures, e.g3—0 in Eq. (6.4). However, all the
(j,—i)+(—1j.j) terms(only whenk=—j does the factor propagators and correlation functions become diagonal in the
wj+ oy in the denominator of Eq7.3) get small close to the conservative limit, as they should. In fact, applying Eq.
conservative limit, which is the only case in which a single(2.14 to Eq.(6.2) in this limit readily yields
resonance can dominat® arrive at

B. Decay rate and the resonance approximation

f1(x)?

B(W)%’Dra’(a’)zzw_( (7.9
J

|(‘)|_wj).

~ a
B(w)~D () (aj(w)a) = w(l_e P7) Nw—w)dj , ((71.13
_fxo0fa)? oy o in agreement with the creation-annihilation interpretation of
~ 4o, AIm o] | o] o]+ o |’ (7.10 thea; in trlis limit given abovelEq(S.S). As a result both Eq.
(6.4 for F and Eq.(7.3 for G become diagonal in the
Without loss of generality choosing>0, the secondnon-  conservative limit as well.
resonant term in Eq.(7.10 is of the same order as those
already neglected, and hence for most purposes may be omit- VIIl. EXAMPLE: THE DIELECTRIC ROD
ted. However, only the sum of the two terms in E@.10
preserves the fundamental relati0]

A useful check and example of the preceding is given by
the “dielectric rod” model[11]:

DR(w)=D*(w) (7.13 p(x)=n?6(a—x)+n36(x—a). (8.1

for real w, whereDR (D*) is the retardedadvancefipropa-  That is, we generalize the conditiof2.6) and allow

gator obtained fromD(w) by continuation from positive p(x>a) to be an arbitrary constan§. To be sure, this gen-
(negative frequencies. As a consequence, it turns[6lithat  eralization is trivial in principle since a model with param-
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eters 0,ny,a) can be mapped onto one with parameters 0.10 ' . ' .
(n/ng,1npa) by the substitutiorx—ngx. Yet it is conve-
nient in practice, since we can now deal with two different
conservative limits[see the discussion below E¢8.4)]: 0.08
n/ny— 0 (the “nodal” limit) andn/ny— o (the “antinodal”
limit), by letting ng—c and ny—0, respectively, while 5
keepingn, a, and hence Re; [see Eq(8.2) below] fixed. g 008
The model(8.1) can be solved exactly for the QNM fre- £
quencieg12], which read31] g
S 004
i+3Hm—i n>n 5
naw; = FJ 2-)77 i arcotl{n/ng), 0 ©.2 S
jm—iartaniin/ng), n<ng 0.02
) i ngtn
=jm 2In no—n" (8.3 0.00 =

Both np— andny—0 are indeed seen to be conservative

limits (Im w;—0). They correspond to clamped and free  FiG. 1. Equal-space correlation function within the dielectric
ends, respectively, in the interpretation of the wave equatiokod as a function ok att=0.1 and different inverse temperatuggs
as the transverse vibrations of a strir®2,33. On the other  The refractive indices are,=1, n=5; the widtha=1.

hand, forny—n the dissipation tends to infinity, and the

QNM description breaks down in the limit,=n (see, how- electric rod QNMSEgs. (8.2) and (8.4)] into Eq. (8.6), the

ever, the end of this sec_timn . o ) sum overj can be performed as theonventionalFourier
The QNM wave functions are given inside the cavity by series[35]

[31]

£1(00= /o= sinn;x) 8.4 el _ e

(X)= sin(Nw;X); . — = <z< .

: n’a ' 2 jr—ia e*-1’ O<z<2 .7

their normalization is still given by Eq2.11), but our gen-

eralizationp(x>a)=ng is readily shown to imply a corre- implying

sponding modification of the surface term in the scalar prod-

uct definition itself, viz., . . (2
glinz zlea( z)

2a_1 '

- — = 0<z<2, (8.8
JT—la e

<§.x>=i{ f: dX[Z(X) x(X) + L(x) x(X) ]+ npd(a) x(a) | - i
(8.5

In the “nodal” limit ny—o, Egs.(8.2) and (8.4 show
thatfj(a)~ngl, SO thqt the fgctofj(a)fk(a) in the surface B 2n,sin(Nwx)sin(nwy)
term of the orthogonality relatio®.14), (8.5 overcomes the F(x,y,w)= By n2air Zo0d .
explicit factorn,, allowing the surface term to be neglected. w(1-e""*)[ngsi(nwa) +n“cos(nwa)]

This nodal limit has a counterpart in the “loaded string” (8.9
modelp(x)=1+M d(x—a), whereM can be set to infinity

[34]. On the other hand, in the antinodal limi§g—0 itis the  This result also follows from the modes of the universe ap-
explicit ny that allows neglect of the surface terfi(a)  proach in Appendix D.

tending to a constant. Hence, the QNM expansion becomes a As discussed in Sec. Ill, the subtracted correlation func-
standard normal-mode expansion alsagf<n, which clari-  tjon Fis directly related to the energy density, and is in fact

and some rearrangement yields the correlation function as

fies a detail left open in Sec. Il and Ré1.2]. ~_ the squared amplitude of the field strength. Figure 1 shows
By means of a partlal—fractlon expansion and the identityr (x x t) versusx att=0.1 for the dielectric-rod model with
(6.13, the expressioii3.6) for F can be rewritten as a=1,ny=1, n=5, for different values of3; this shows that

) the field amplitude is largest near the leaky end of the rod.
| Figure 2 showdg(x,X,t) versust at x=0.3 (all other pa-
2w(l—e Pv) rameters the same as befpr€his diagram vividly illustrates
the advantage of the QNM approach—although the result is,
8.6 in principle, obtainable from the modes of the universe
T method, the clear oscillatory signal is best captured by ex-
pressing this quantity in terms of QNMs.
which is analytically more convenient even though the sum Also for the Feynman propagator the suifi4) can be
over j converges more slowly. Upon substitution of the di- performed ifp=const, yielding

F(x,y,0)=

1
+
wj—w wj+w

x$ f,(x)f;(y)
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0.020 ' ' ' ' a transformation of the spatial variabl&2], however, this
— B=5 has not been taken up here.
0015 Non-Hermitian Hamiltonians and the ensuing complex ei-

genvalues also figure prominently in Siegman’s work on dis-
sipative CQED[36], which elaborates on that of Fox and Li

g 0010 [37], where already the latter considers eigenvalue problems
fg: for complex symmetric operators. Howev¢B6] and [37]
g 0005 deal with transverse modes in the semiclassical |{mitly
g consideringa) c-number fields with some effective quantum
% 0.000 noise, and(b) the limit A <a, where\ is the wavelength
© Thus the present paper pertains to a different regime, and
0,005 there is the intriguing possibility of a future unifying ap-
proach.
Instead of generalizing the physical system one can also
0010, 5 100 200 200 200 50.0 relax the assumption of global equilibrium made in Sec. VI.
¢ Itis recalled here that the formalism of Secs. IV and V—and,

in particular, the driving forcé of Eq. (4.2—is well defined
FIG. 2. Equal-space correlation function within the dielectric for any initial state of the fields; taking a coherent state for
rod as a function of atx= 0.3 and different inverse temperatug@s  the latter instead of a thermal one enables the study of a

The refractive indices argy=1, n=5; the widtha=1. pumped cavity.

On the theoretical side, it would be interesting to provide
~F sin(Nwx) a path-integral formulation of QNM quantization. This can
C'xy,w)=———— supposedly be done on two levels. The first, semiphenom-

enological one is to write down an effective action generat-
ncognw(a—y)]—ingsin njwl(a—y)] ing dynamics equivalent to E¢.4). The second, more fun-
ncognwa)—ingsin(n|w|a) damental one is to start with the action for the whole

universe for our mode(3.1), integrate out the degrees of
(8.10 freedom of the outside, and use a QNM basis for the ensuing
dynamics of the cavity.
for x<y, while for x>y the propagator is obtained via  For such future developments, this paper can hopefully
GF(x,y, ) =G (y,x,w). serve as a starting point and reference. In conclusion, we
Notice that the final expressioi®.9) and(8.10 tend to a  have shown that the QNM expansion is as powerful for open
finite limit if ng— n even though the individual terms in Eqgs. second-quantized systems as it is for their classical counter-
(3.6) and(7.4) do not. This illustrates that the QNM expan- parts.
sion retains its validity up to arbitrarily large damping. In
this semi-infinite string limit the very notions of cavity and ACKNOWLEDGMENTS
environment lose their meaning, and indeed the right-hand
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IX. FINAL REMARKS

To summarize, we have developed the second-quantized®PPENDIX A RELATION BETWEEN SURFACE TERM
version of the field theory using the QNM basis. Various AND IMAGINARY PART OF THE FREQUENCY

physical quantities are then written as sums over QNM | this appendix we give an alternative proof of the iden-
contributions—either as diagonal sums over a single index v, (5.6) in the conservative limit. For this purpose, gener-

or as nondiag.onatll sums to‘g?réi lpai:j_of irt1di¢bs Thfe ﬁﬁo‘ _?Iize to complex classical fields and define the energy den-
nance approximation is studied, leading to a proof of the unit.. - 21m 1212 o
weight of narrow resonances in the density of states, or?'_ty h(x) =dxg| /_2+|f| /2’)()9’ so thath(x)= ,aXJ(X)

equivalently, the enhancement rate for the decay of excite®ith the currentj(x) = —Re 4(X)ah(X)/p(x). Define the

states as embodied in the behavior of the equal-space propeavity energy E=f8+dx h(x), then for a field ¢(x,t)

gatorD (w). =f;j(x)e”'“i" att=0 one has

As has been mentioned already in Sec. I, an important ot
extensiorj of the present work is to'inc.lude matter in the E:Z|fj(a)|2+(Re “’i)ZJ dx p(X)|f]-(X)|2, (A1)
Hamiltonian (3.1), enabling the application of QNMs to 2 0

guantum optics. This will be the subject of REB]. Other o ]
generalizations include the study of vector fields, and otvhere y=[Im wjl. In the conservative limit the first term
open systems in three space dimensions. Further, a develoyanishes, while the integral in the second term tends to unity
ment parallelling the present one could be carried out for theso that E—>|wj|2. Combination with —E=2yE=j(a")
Klein-Gordon equation instead of the wave equati@l)  =|w;|?|f;(a)|*> shows that|f(a)|?/2y—1 in this limit,

[9]. Since the two evolution equations are directly related bywhich proves our assertion.
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APPENDIX B: IDENTITY FOR RETARDED PROPAGATOR The numerator of this last expression is itself another

) . .
In this appendix we derive the Green’s-function identitywronSk'an’ and hence can be evaluategaa” to yield

(6.5. To this end, we definé(x,w) (g(y,w)) as the solu-

tion of the homogeneous wave equati@) (upon the sub-  GR(x,y,w)—GR(X,y,— o) . g'(a”,w)
stitution w;— w) satisfying the firstsecond of the boundary  ~— ~R =—2i1m (a,0)
conditions(2.5) [38]. This allows one to write G"(x,a,0)G"(y,a,~ ) glaw
~ f(X,w)g(Y,w) 2w
GN(x<Yy,w) W(w) , (BY) i

where one can choos&(x,w)=f(x,—w)=f*(x,0) and
g(y,0)=g*(y,—w), and where W is the position-
independent Wronskian of the functiohsandg [11]. Then
one has

completing the proof of Eq6.5).

APPENDIX C: EXPANSION OF TENSOR CORRELATOR

~R ~R ~
G (xy @)= GHxy,~ ) The coefficients, in Eq. (6.7) are given by the projec-

GR(x,a,0)GR(y,a,— w) tion
_ gy, o)W (0) ~g* (y,0)W(w) By = L@ fi @ T0) 1
- [9(a,0)[f(y,w) 4wj oy
_9(y,®)g"™*(y,®)—g'(y,®)g*(y,») 82 in terms of the bilinear form on the product space, which

lg(a,0)]? reads

+

<<P’Q>>E_J: dx dy{P11(X,¥) Q2 X,Y) + P1AX,¥) Q21(X,¥) + P21(X,¥) Q12 X,y) + P2 X,y) Q11(X,y) }

_Jo dx{P11(x,a)Qzy(x,a) + P21(X'a)Q11(Xaa)}_JO dy{P11(a,y)Qia,y)+Pix(a,y)Qu(a,y)}

- Pll(a!a)Qll(a!a)- (CZ)

Substitution of Eq(6.6) for F(w) into Eq. (C1) yields

1 a® _
ajk(w):mr(wj+w)(wk_w)Jo dx dy p(x)p(y) f;(X) fi(Y)F(XY,w) +i(wj+ o) f(a)

% [ ax pot 00F @ w) oo | dy p(y)fk<y>ﬁ<a,y,w>—f,—(a)fk<a>ﬁ<a,a,w>]. 3

Inserting any QNM expansion  F(X,y,w) d(X) _E (u,T+ up/~2v, D1
=3 mbim(@) f;(X)f(y) such as Eq(3.6) or Eq. (6.4) and o) b ipymi2uf —u) yxam). (DY
invoking the relationg2.11), (2.14), and(6.13, the expres-
sion (C3) can be evaluated as in E@.8), which is what we
set out to show.
APPENDIX D: MODES OF THE UNIVERSE APPROACH i.e., it is of the same form as E¢5.8) but in Eq.(D1) the
TO THE CORRELATION FUNCTION sum runs over the MU frequencies=I|#/A (to leading

It is instructive to rederive the correlatd¥ using the Order ina/A<1), theu; andy; being MU annihilation op-

modes of the univers@MU). The MU expansion of the fields erato.rs and wave functions, respectively. Insertion of Eq.
reads[39] (D1) into Eq.(3.4) yields
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_ YO ) (Y, ve) son occupation numbe(w)=[expBw)—1]"1. Compari-
F(X,y,w)zz —— son of Eqs(6.4) and(D2) elucidates why the former factor-
m 2V o, izes with respect ta andy: this is seen to be a consequence
~ ~ t of the nondegeneracy of the MU spectrum of the semi-
X({ui (@) (@) H{up + Un) infinite string, as opposed to, e.g., a free string or one with
YO, v) (Y, ) periodic boundary conditions. Evaluation ¢ffor the “di-
—E 2—<U (0)U+U(o)u) electric rod” of Sec. VIII at once shows that E@2) indeed
reduces to Eq8.9) in this case, providing a further compari-
A son among the various techniques of this paper.
= mw(x,|w|)¢(y,|w|) Finally, in terms of the MU the local density of states is
defined as

X{6(~ w)N(~ )+ 6(w)[N(w) +1]}

_ Ay |y, w])
w(1-e P)

A
(D2) dx,0)=2 [y(x,n)[28(m-0)= —(x,0)% (D3

To arrive at the third line, we usedi(w)=2m7
X 8(w+ v)u" [upper sign fofli(w)] and defined the bo- and comparison with EqD2) at once reproduces E¢5.9).
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